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Abstract 

 

Simplified General Perturbations Number 4 (SGP4) has been the traditional 

algorithm for performing Orbit Determination (OD) onboard orbiting spacecraft. However, 

the recent rise of high-performance computers with low Size, Weight, and Power (SWAP) 

factors has provided the opportunity to use Special Perturbations (SP), a more accurate 

algorithm to perform onboard OD. This research evaluates the most efficient way to 

implement SP on NVIDIA’s Jetson TX series of integrated Graphical Processing Units 

(GPUs). An initial serial version was implemented on the Jetson TX1 and TX2’s Central 

Processing Units (CPUs). The runtimes of the initial version are the benchmark that the 

runtimes of the other versions were compared against. A second version of SP was 

implemented using compiler optimizations to increase the speed of the program. A third 

version was developed to utilize the Jetsons’ 256-core GPU for parallel processing to 

reduce the runtimes of the program. Runtimes of the different versions were then analyzed 

to determine the most efficient way to implement SP on the Jetson TX series of computers.  
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SPECIAL PERTURBATIONS ON THE JETSON TX1 AND TX2 COMPUTERS 

 

 

 

 

1.  Introduction 

This chapter introduces this research and discusses the motivation for 

accomplishing it. The assumptions made and limitations that exist are then presented and 

discussed. A brief overview of the entire thesis is also contained in this section.  

1.1 Background Information  

 The space domain is becoming increasingly congested as additional countries 

launch satellites into orbit (Colliot et al., 2012). Therefore, maintaining Space Situational 

Awareness (SSA) is imperative in ensuring U.S. space assets remain operational.  SSA is 

loosely defined as enabling the description of the location and function of all resident space 

objects (RSOs) (McCall et al., 2014); thus, determining the position of a space object is an 

absolute necessity. This is accomplished through a process known as Orbit Determination 

(OD).  

 OD is the practice of determining the two primary components of an orbiting 

object’s state vector, position and velocity, at a specific moment in time (Wiesel, 2003). 

This is accomplished by using an initial guess of the state vector to determine a preliminary 

orbit. This preliminary orbit does not take into account any external forces, or 

perturbations, such as variations in the potential of Earth’s gravity field or atmospheric 

drag that are measured through ground- or space-based observations. Hence, a set of 
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equations of motion can be encapsulated in a dynamics model to more accurately represent 

the object’s physical environment (Vetter, 2007). The orbit is then propagated forward in 

time to estimate the state vector at a future epoch. This can be accomplished analytically 

through a general perturbations method such as Simplified General Perturbations Number 

4 (SGP4) or numerically through a Special Perturbations (SP) method (Vetter, 2007). 

Computers first started being used to perform OD in the mid-twentieth century. At 

this time, their computational power was insufficient for producing precise orbit 

propagations.  Thus, less computationally-intensive methods were required to perform OD 

on near-Earth space objects. General perturbation techniques such as SGP4, which assume 

that there are only small deviations from the two-body problem, were developed to meet 

this need (Wiesel, 2003).  

While ground-based radar and optical sensors continue to be the primary pillars of 

SSA, they are limited by weather, solar blindspots, and their geography (Baird, 2013). 

Performing OD onboard the spacecraft can mitigate these limitations. Due to the Size, 

Weight, and Power (SWAP) constraints of space vehicles (SVs), SGP4 has been a natural 

fit for onboard OD. Its light-weight design can be implemented on small, energy-efficient 

computers.  

However, SGP4 has its drawbacks; namely, it sacrifices precision for 

computational efficiency in order to provide a light-weight approach to OD for near-Earth 

space objects. Due to this trade-off, the accuracy of SGP4 is typically on the order of one 

kilometer (Vallado et al., 2006). This fact, paired with the increased capability of modern 

computing, has recently caused the use of SGP4 for SSA tasks to be called into question 

(Oltrogge et al., 2014). 
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The SP model, on the other hand, is a more accurate OD method that uses numerical 

integration to calculate ephemerides for Earth-centered space objects (Air Force Space 

Command (AFSPC), 2012). This method was first utilized by Cowell and Crommelin in 

the mid-nineteenth century when they numerically integrated the equations of motion for 

Halley’s Comet to predict its 1910 passing of Earth to within three days (Crommelin, 

1911). This method, paired with modern computing resources, can be used to more 

precisely determine an Earth-centered satellite’s position (Pelaez et al., 2007).  

Because SP integrates over definite integrals, perturbing forces must be calculated 

at each step, with the most expensive perturbing force to compute being the geopotential. 

This makes SP extremely computationally expensive. Historically, computers powerful 

enough to implement SP have been too large to use onboard a spacecraft. However, as 

Moore’s Law has predicted, computing resources have become increasingly powerful 

while decreasing their SWAP factors (Moore, 1965). Thus, implementing SP has finally 

become a viable option for onboard OD.   

1.2 Motivation  

The Space Object Self-Tracker (SOS) is an experimental payload developed by the 

Air Force Research Laboratory (AFRL) and the Air Force Institute of Technology (AFIT) 

as part of the Payload Alert Communications System (PACS) (Bastow, 2013). The 

objective of PACS is to reduce uncertainty when calculating the positions of space objects. 

This improves the accuracy of collision avoidance analyses performed by the Joint Space 

Operations Center’s (JSpOC). SOS was designed to be a low SWAP solution to precisely 

tracking an SV through onboard OD (Perry, 2014).  



www.manaraa.com

4 

Figure 1 depicts the SOS concept of operations under normal operating conditions. 

The payload collects GPS position and velocity data every 10 minutes. Every 24 hours, the 

Single Board Computer (SBC) performs OD to estimate and propagate the orbit of the SV. 

Once OD is complete, the SBC sends the orbit parameters and associated telemetry to Air 

Force space operations units on the ground via the Iridium network (Perry, 2014). 

 
Figure 1. SOS Concept of Operations (CSRA, 2014) 

An implementation of SP has been developed for SOS by Wiesel (2015) and tested 

by Flamos (2016), producing sub-meter level accuracy (Flamos, 2016). However, the low 

throughput of SOS’s single-core SBC, which has a maximum clock speed of 200 MHz 

(Technologic, 2010), is insufficient in running SP in a timely manner. For this reason, SOS 

currently uses the SGP4 model. The SBC is powerful enough to run this SGP4 model; 

however, it produces an error that grows at a rate of 2 kilometers per day (Flamos, 2016).  
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Because of the limitations of the SBC, more powerful computers with small SWAP 

parameters were investigated to determine a replacement. The Jetson TX1 and TX2 

integrated Graphical Processing Units (GPUs) were chosen as potential candidates. The 

Jetson TX1 has a quad-core CPU, with each individual processor on the CPU having a 

clock speed of 1.73 GHz (NVIDIA, 2016). The Jetson TX2 has a six-core CPU, with each 

core having a clock speed of 2.0 GHz (NVIDIA (A), 2017).  Both Jetsons have 256-core 

GPUs that can be used to compute tasks in parallel. The computing power of these 

computers presents an opportunity to replace the SGP4 OD algorithm used by SOS with 

SP, which would reduce the error from the order of a kilometer to below a meter. 

1.3 Research Focus 

The ultimate goal of the research presented in this thesis was to determine an 

efficient way, in terms of runtime, to implement SP on the Jetson TX series of computers. 

Two primary approaches to optimizing SP were taken. The first approach taken was to use 

compiler flags to optimize the SP code running in serial on the Jetsons’ CPUs. The second 

was to develop a parallel geopotential model that could utilize the Jetsons’ GPUs. The 

runtimes from these two approaches were analyzed and compared to determine which is 

the most efficient in implementing SP on the Jetson TX1 and TX2.  

The success of this research faced three primary challenges. First, the SP software 

developed for SOS was designed to run on the Windows operating system. The Jetson TX1 

and TX2, however, run the Linux operating system and initial attempts to compile the SP 

application on the Jetson TX1/TX2 proved unsuccessful. Thus, the SP software had to be 

ported to run on a Linux machine.  
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Second, it was unknown which compiler flags, if any, would best optimize the serial 

code. Because there are several hundred compiler flags from which to choose, a guide had 

to be used to determine which compiler flags were most likely to benefit the application.  

Once the list of compiler flags was reduced, tests had to be run to determine which 

combination of compiler flags produced the fastest executable.  

Third, the feasibility of using parallel computing to increase the speed of the SP 

model was uncertain. The SOS codebase uses the Pines Method (Pines, 1973) for 

computing the geopotential. This is the most time-consuming component of the code; 

hence, it was the most likely to benefit from parallel computing. However, the Pines 

Method depends on recursion to calculate several of the primary variables it uses to 

compute the geopotential (Pines, 1973). This makes a large portion of it inherently serial, 

meaning that it was not particularly amenable to parallelization.  

Furthermore, it was unknown at what point, if any, computing the geopotential in 

parallel would reduce its runtime when compared to the initial serial version. The SP 

software uses the Earth Gravity Model 1996 (EGM96) as input for the geopotential routine. 

This model consists of two lower triangular matrices of harmonic coefficients, 𝐶 and 𝑆, of 

degree and order 360 (Lemoine, 2005). Depending on the accuracy requirements, the 

granularity of the model can be scaled up or down by varying the degree and order of the 

model. Because 𝐶 and 𝑆 are lower triangular matrices, the number of elements included in 

the model is equal to the summation from zero to the degree and order plus one:  

∑ 𝑖 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(𝐷&𝑂)+1

𝑖=0
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That is, if degree and order of 10 𝑋 10 is desired, then both matrix 𝐶 and matrix 

𝑆 will consist of 0 + 1 + 2 + 3 + ⋯ + 10 + 11 = 66 elements. If degree and order of 

360 𝑋 360 is desired, matrix 𝐶 and matrix 𝑆 will consist of 0 + 1 + 2 + 3 + ⋯ + 360 +

361 = 65,341elements.  

 
Figure 2. Lower Triangular Matrix 

The number of elements included in the 𝐶 and 𝑆 matrices correlates to the number 

of threads launched on the GPU. Since the benefit of using the GPU scales as a factor of 

the number of threads launched, the degree and order of the geopotential directly affects 

the potential benefit of using it. However, the accuracy requirements of the implementation 

of SP used for this research only necessitate the use of degree and order of 50 or less. 
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Therefore, the most number of threads that could be launched when calculating SP was the 

summation from zero to 51, or 1,326.  

The first task that had to be completed for this research was to update the SP 

software developed on a Windows machine so that it could compile and run on the Jetsons’ 

Linux operating system. Once the solution produced by SP running on the Jetson TX1 and 

TX2 was verified for correctness, the following two hypotheses could be tested: 

1. There is a combination of compiler flags from the chosen list that will result in 

reduced runtimes compared to the initial serial version of SP running on the Jetson 

TX1/TX2.  

2. Computing portions of the geopotential model in parallel will result in reduced 

runtimes compared to the initial serial version of SP running on the Jetson 

TX1/TX2.  

The results from these two hypotheses were used to determine the answer to the ultimate 

question being investigated in this thesis: What is the most efficient way to implement SP 

on the Jetson TX1 and TX2? 

 Before the two hypotheses could be tested, the existing SP software was 

reconfigured to run on the Jetson TX1 and TX2. This initial serial version included no 

optimizations or parallelization. Success in completing this task was achieved if the 

application developed for both Jetsons converged to the same solution as the Windows 

version.  

To test the first hypothesis, different compiler optimizations were applied to the SP 

software. The runtimes of the resulting applications were compared to the initial serial 
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version of SP running on the Jetsons to determine if any combination of compiler 

optimizations reduced the runtimes. Success was achieved if the runtimes of this optimized 

serial version were less than those of the initial serial version for any degree and order less 

than or equal to 50. 

For the second hypothesis, the Assess, Parallelize, Optimize, and Deploy (APOD) 

software development cycle was applied to the existing SP codebase. A stand-alone, 

parallel version of the geopotential model was developed and underwent several 

optimization steps to improve its runtime. It was then integrated into the SP codebase. 

Success was achieved if the runtime of SP using the parallel geopotential model was less 

than that of the initial serial version for any degree and order less than or equal to 50.  

Once the two hypotheses were tested, the most efficient way to implement SP on 

the Jetson TX series of computers could be determined. Both the optimized serial version 

and the parallel version of SP were compared to initial serial version running on the Jetson 

TX1 and TX2 to determine the most efficient implementation. The performance benefit of 

running SP on the Jetson TX2 over the TX1 was also analyzed. 

1.4 Assumptions and Limitations 

 Several assumptions and limitations are associated with this research. Namely, the 

hardware and software constraints, testing assumptions, and the use of the Pines Method 

for computing the geopotential.  

It was assumed that the Jetson TX1 and TX2 must be used. This meant this research 

was limited by the capabilities of the Jetson TX1 and TX2, such as the amount of active 

threads each can handle and the amount of on-chip storage each GPU has.  Because 
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NVIDIA’s Jetson TX1 and TX2 had to be used, it was assumed any parallel code developed 

would be completed using NVIDIA’s Compute Unified Device Architecture (CUDA) 

C/C++ language extension. CUDA was specifically developed for parallel computing with 

NVIDIA GPUs; thus, it was assumed to be the most logical choice for implementing 

parallel code on the Jetson TX1/TX2.  

The testing and development accomplished in this research was completed using a 

single test case. The initial state vector was given in terms of Earth-Centered Inertial (ECI) 

coordinates and it used all terms of the geopotential, not just the zonal coefficients. These 

and other conditions of the test case guided its path through the SP software such that it 

only used certain functions. However, this test case used all the primary functions that the 

payload is likely to use under normal operating conditions. Thus, it was assumed to be a 

sufficient test case. This research was also limited to using runtime efficiency as the 

primary measure of performance. Power consumption and other factors were considered 

to be outside of the scope and were not considered when measuring performance. 

Different types of geopotential models such as Mass Concentration (Mascon) and 

3D interpolation have been developed in order to sidestep the problems presented by the 

recursion found in the Pines Method (Russell, 2012; Arora, 2016). However, due to the 

time constraints of the academic program, the scope of the research presented in this thesis 

was limited to parallelizing the existing SP codebase. Therefore, it was assumed Pines 

Method must be used for computing the geopotential. 
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1.5 Thesis Overview 

This thesis consists of five chapters. Chapter I provides an introduction to the topic 

of the research and the background information relevant to it. Chapter II provides an in-

depth look at the relevant subject matter required to complete the research presented in this 

thesis. Subjects include: the existing codebase of SOS, geopotential modeling, compiler 

optimizations, CUDA, the Jetson TX1 and TX2, and the APOD design cycle. Chapter III 

presents the methodology used to complete the research accomplished in this thesis. The 

two hypotheses discussed in Section 1.3 guide this section. In Chapter IV, the results from 

all experiments conducted to test the hypotheses are analyzed and discussed. Finally, 

Chapter V summarizes the results of this research and makes recommendations for future 

work.  

1.6 List of Terms 

Table 1. List of Terms 

AFSPC Air Force Space Command 

APOD Assess, Parallelize, Optimize, and Deploy 

ARM Acorn RISC Machine 

CERN Conseil Européen pour la Recherche Nucléaire 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

D&O Degree and Order (of the Geopotential) 

DRAM Dynamic Random-Access Memory 

ECI Earth-Centered Inertial 
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EGM96 Earth Gravity Model 1996 

GNU GNU’s Not Unix! 

GPGPU General-Purpose GPU 

GPU Graphical Processing Unit 

GSFC Goddard Space Flight Center 

HBM2 High-Bandwidth Memory 2 

HPC High-Performance Computing 

LEO Low-Earth Orbit 

MJD  Mean Julian Day 

NGA National Geospatial-Intelligence Agency 

NIMA National Imagery and Mapping Agency 

NRL Naval Research Laboratory 

NVCC NVidia C Compiler 

OD Orbit Determination 

PCI-e Peripheral Component Interconnect-express 

RISC Reduced Instruction Set Computing 

RMS Root-Mean-Square 

RSO Resident Space Object 

SGP4 Simplified General Perturbations 4 

SIMT Single Instruction, Multiple Threads 

SM Streaming Multiprocessor 

SOS Space Object Space-Tracker 
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SP Special Perturbations 

STK Systems Tool Kit 

SV Space Vehicle  

SWAP Size, Weight, And Power 
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2. Literature Review 

This chapter presents a literature review of relevant background information needed 

to perform the research including the SOS software, gravity modeling, and GNU’s Not 

Unix! (GNU) compiler flags. NVIDIA’s parallel programming language extension, 

CUDA, the Jetson TX1 and TX2 integrated GPUs, and the APOD design cycle are also 

discussed in detail. 

2.1 Space Object Self-Tracker Software 

 The SOS program currently utilizes SGP4; however, an SP implementation has 

been developed by Wiesel et al. (Flamos, 2016). It was written in C++ and compiled to run 

on a Windows machine. This algorithm numerically integrates the equations of motion and 

the equations of variation of a space object and propagates them to predict its state at a 

future epoch. This research investigates the feasibility of replacing SGP4 with SP; hence, 

only the SP algorithm is discussed in this section.  

 The SP software used is comprised of the files in Table 2. The main function is 

located in the SPLstSq.cpp file. SPLstSq.cpp also accomplishes Blocks 1-3 in Figure 3. 

The main function calls the hamming routine in Hamming.cpp to begin the least squares 

iteration. Throughout this process, the Dynamics model contained in 

EarthTruth.h/EarthTruth.cpp is applied to the state vector, which uses routines in 

Atmosphere.cpp and Geopotential.h/Geopotential.cpp to account for perturbing forces. 

Once these perturbing forces are applied to the state vector, it is propagated forward in time 

using the interp function in the Interp.cpp file. This process is repeated until the least 

squares method converges.  
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Table 2. List of Files that comprise the SP Software 

 

 The SP program first reads in observational data and ensures it is in the correct 

format (Figure 3, Blocks 1-3). It then uses the least squares method to propagate the initial 

state, applying a dynamics model to account for perturbing forces (Figure 3, Blocks 4-6). 

The algorithm calculates the position residuals for each observation and determines the 

magnitude of error (Figure 3, Block 7-8). It then uses the error calculations to correct the 

reference trajectory (Figure 3, Block 9-10) and iterates through this process until the 

reference trajectory has converged. 
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Figure 3. Special Perturbations Algorithm (Flamos, 2016) 

Figure 4 below is a package diagram illustrating the relationships between these 

files, namely which files include routines from other files.  
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Figure 4. Original Package Diagram of the SP Software 

 The dynamics model contained in the EarthTruth files calls the geopotential routine 

thousands of times per iteration of SP. Because calculating the geopotential is very 

computationally expensive, this takes up a significant amount of SP’s total runtime. The 

geopotential is explained in further detail in Section 2.2. 

2.2 Earth’s Gravitational Field 

 Traditionally, orbital mechanics has focused on the two-body problem, concerning 

two masses interacting through Newtonian point mass gravity (Wiesel, 2003). This is 

because naturally occurring celestial objects with relatively large masses such as comets 

and planets are typically separated by enough distance that the gravitational forces of other 

𝑁-order objects are negligible. However, since the advent of manmade spacecraft, other 

perturbing forces must be taken into account when considering near-Earth space objects in 

Low-Earth Orbit (LEO). Because of Earth’s rotation and variations in its surface density, 

the potential energy created by Earth’s gravity field, or the geopotential, varies, especially 
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for RSOs in LEO. Objects at these altitudes also encounter atmospheric drag and space 

environment effects such as solar radiation that can have an impact on their orbits over 

time (Wiesel, 2003), but since this research is primarily concerned with the geopotential, 

only it is discussed in further detail.   

2.2.1 Accounting for Variations in the Geopotential  

The magnitude of variation in the geopotential can be large at lower altitudes 

(Wiesel, 2003). Earth’s rotation causes it to bulge about its equator, making it an oblate 

rather than a homogeneous spheroid. This added mass about its equator increases the 

geopotential in this zone. This is shown in Figure 5, where the horizontal radius is larger 

than the vertical. Further deviations from a perfectly spherical gravity field are attributed 

to variations in the Earth’s density; for example, the geopotential is generally stronger over 

a mountain range and weaker over an ocean basin. Because of these irregularities, the 

geopotential must be modelled as distribution of points in LEO instead of as a singular 

point mass at Earth’s center as with higher altitude orbits (Wiesel, 2003). 

 
Figure 5. Earth’s Oblateness (SandBox Science, 2017) 
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 Earth’s gravitational potential at a specific point can be expressed as a distribution 

of mass. Using polar coordinates, the geopotential, 𝑉, is expressed as 𝑉(𝑟, 𝛼, 𝜆), where 𝑟 

is the object’s distance from Earth’s center, 𝛼 is its geocentric longitude, and 𝜆 is its 

geocentric colatitude. The geopotential can be derived by expanding the following infinite 

series known as the geopotential expansion:  

 

𝑉(𝑟, 𝛼, 𝜆) =  
𝜇

𝑟
⋅ {1 + ∑ (

𝑎

𝑟
)

𝑛

∑ 𝑃
𝑚
𝑛

(sin 𝛼) (𝐶
𝑚
𝑛

⋅ cos 𝑚𝜆 + 𝑆
𝑚
𝑛

⋅ sin 𝑚𝜆)  

𝑛

𝑚=1

∞

𝑛=1

} 

Equation 1. Geopotential Expansion (Wiesel, 2003) 

where 𝜇 is the gravitational constant; 𝑎 is the Earth’s equatorial radius; 𝐶 and 𝑆 are the 

spherical harmonic coefficients; and 𝑛 and 𝑚 are the degree and order, respectively. 𝑃 

represents the Associated Legendre Function (ALF), which is the zonal harmonic solution 

to the Legendre differential equation (Wiesel, 2003). 

The spherical harmonic coefficients, or geopotential coefficients, of 𝐶 and 𝑆 are 

obtained through measurements and observations to account for Earth’s oblateness and 

density variations. They represent the actual shape of the gravity field; therefore, they are 

the primary elements of a geopotential model (Wan Aziz et al., 1998). 

2.2.2 Earth Gravitational Model 1996  

 In the 1990s, the National Imagery and Mapping Agency (NIMA), now known as 

the National Geospatial-Intelligence Agency (NGA), led a joint effort along with the 

NASA Goddard Space Flight Center (GSFC) and The Ohio State University to develop a 

high-fidelity geopotential model. This collaboration resulted in the Earth Gravitational 
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Model 1996 (EGM96), an improved geopotential model with degree and order of 360 

(Lemoine, 2005). 

This project required the collection of an immense amount of surface gravity data 

in order to accurately account for Earth’s oblateness and density variations. The Naval 

Research Lab (NRL) conducted airborne gravity surveys over Greenland and parts of the 

Artic and Antarctica, while NIMA partnered with gravity collection projects from nations 

around the globe to cover land areas (Lemoine, 2005). Their efforts resulted in more than 

30 million gravity points being recorded. These values were used to interpolate Earth’s 

gravity field by computing point gravity anomalies using the geopotential expansion 

(Lemoine et al., 1998).  

 
Figure 6. EGM96 Geoid (Lemoine, 2005) 
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These results were augmented by an extensive series of satellite tests. The NASA 

GSFC partnered with the U.S. Navy and European space agencies to launch the GEOSAT, 

TOPEX/POSIEDON, and ERS-1 missions. The direct altimetry collected by these 

satellites, paired with data collected from tracking the orbits of more than 20 other 

satellites, was used to verify and validate the surface collections. These efforts produced 

the high-fidelity EGM96 geopotential data that attained an accuracy on the magnitude of 

several milligals (Lemoine, 2005). 

2.2.3 Pines Method 

Because the traditional method of calculating Earth’s geopotential uses spherical 

coordinates, it does not account for singularity about the Earth’s poles. Thus, Pines 

introduced the uniform representation of the geopotential in which the geopotential 

expansion (Equation 1) was modified to overcome this singularity (Pines, 1973). The 

formulation of Pines Method is presented in this section.  

The spherical coordinates, 𝑟, 𝛼, 𝜆, are represented in directional-cosine, Cartesian 

coordinates as the position vector of 𝑹 = {
𝑥
𝑦
𝑧

} in which: 

𝑥 = cos 𝛼 ⋅ cos 𝜆  

𝑦 = cos 𝛼 ⋅ sin 𝜆 

𝑧 = sin 𝛼 

And the scalar vector:   𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

Pines then proposed a three-component unit vector 𝑹̂ = {
𝑠
𝑡
𝑢

}, where: 
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𝑠 =
𝑥

𝑟
 

𝑡 =
𝑦

𝑟
 

𝑢 =
𝑧

𝑟
 

And,      𝑠2 + 𝑡2 + 𝑢2 = 1  

Furthermore, the ALFs, 𝑃
𝑚
𝑛

(𝑢), were modified to become the derived Legendre 

polynomials (DLFs): 

𝐴
𝑚
𝑛

(𝑢) =
1

2𝑛𝑛!
⋅

𝑑𝑛+𝑚

𝑑𝑢𝑛+𝑚
⋅ (𝑢2 − 1)𝑛 

The complex variable recursion relationships are defined as follows: 

𝑐𝑟𝑒𝑎𝑙𝑚
= 𝑠 ⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1

− 𝑡 ⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1
 

𝑐𝑖𝑚𝑎𝑔𝑚
= 𝑠 ⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1

+ 𝑡 ⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1
 

Further recursion relationships are formed: 

𝜌 =
𝑎

𝑟
 

𝜌0 =
𝜇

𝑟
 

𝜌1 = 𝜌 ⋅ 𝜌0 

𝜌𝑛 = 𝜌 ⋅ 𝜌𝑛−1 

Finally, the coefficient mass functions are defined as follows: 

𝐷
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚 
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚 
 

𝐸
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1
 

𝐹
𝑚
𝑛

= 𝑆
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1
+ 𝐶

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1
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𝐺
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−2
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−2
 

𝐻
𝑚
𝑛

= 𝑆
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−2
+ 𝐶

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−2
 

Thus, transforming the geopotential expansion to the following: 

𝑉(𝑟, 𝑠, 𝑡, 𝑢) =  ∑ 𝜌𝑛 ∑ 𝐴
𝑚
𝑛

𝑛

𝑚=0

⋅ 𝐷
𝑚
𝑛

(𝑠, 𝑡)

∞

𝑛=0

 

The first partial coefficients of acceleration are then derived: 

𝑎1 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑠
= ∑

𝜌𝑛+1  

𝑎
∑ 𝐴

𝑚
𝑛

(𝑢) ⋅ 𝑚 ⋅ 𝐸
𝑚
𝑛

𝑛

𝑚=0 

∞

𝑛=0

 

𝑎2 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑡
= ∑

𝜌𝑛+1  

𝑎
∑ 𝐴

𝑚
𝑛

(𝑢) ⋅ 𝑚 ⋅ 𝐹
𝑚
𝑛

𝑛

𝑚=0 

∞

𝑛=0

 

𝑎3 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑢
= ∑

𝜌𝑛+1  

𝑎
∑ 𝐴

𝑚 + 1
𝑛

(𝑢) ⋅ 𝐷
𝑚
𝑛

𝑛

𝑚=0 

∞

𝑛=0

 

And the coefficient of 𝑹̂: 

𝑎4 =
𝛿𝑉

𝛿𝑟
− (

𝑠

𝑟

𝛿𝑉

𝛿𝑠
) − (

𝑡

𝑟

𝛿𝑉

𝛿𝑡
) − (

𝑢

𝑟

𝛿𝑉

𝛿𝑢
) = − ∑

𝜌𝑛+1  

𝑎
∑ 𝐴

𝑚 + 1
𝑛 + 1

(𝑢) ⋅ 𝐷
𝑚
𝑛

𝑛

𝑚=0 

∞

𝑛=0

 

These first partial derivatives are used to find the acceleration force vector 𝑭 as follows: 

𝑭 = 𝑎1𝒊̂ + 𝑎2𝒋̂ + 𝑎3𝒌̂ + 𝑎4𝑹̂ 

Where 𝒊̂ = {
1
0
0

}; 𝒋̂ = {
0
1
0

}; and 𝒌̂ = {
0
0
1

}. 

The second partial acceleration coefficients are derived similarly to form: 

𝑎11 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚(𝑚 − 1)𝐴
𝑚
𝑛

𝐺
𝑚
𝑛

𝑛

𝑚=0
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𝑎12 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚(𝑚 − 1)𝐴
𝑚
𝑛

𝐻
𝑚
𝑛

𝑛

𝑚=0

 

𝑎13 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚 ⋅ 𝐴
𝑚 + 1

𝑛
𝐸

𝑚
𝑛

𝑛

𝑚=0

 

𝑎14 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 1

𝐸
𝑚
𝑛

𝑛

𝑚=0

 

𝑎23 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚 ⋅ 𝐴
𝑚 + 1

𝑛
𝐹

𝑚
𝑛

𝑛

𝑚=0

 

𝑎24 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 2

𝐷
𝑚
𝑛

𝑛

𝑚=0

 

𝑎33 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 1

𝐹
𝑚
𝑛

𝑛

𝑚=0

 

𝑎34 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝐴
𝑚 + 2
𝑛 + 1

𝐷
𝑚
𝑛

𝑛

𝑚=0

 

𝑎44 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0 

∑ 𝐴
𝑚 + 2
𝑛 + 2

𝐷
𝑚
𝑛

𝑛

𝑚=0

 

The first and second partial coefficients are then combined to compute the gradient of 𝑭, 

𝑃: 

𝑃11 = 𝑎11 + 𝑠2𝑎44 +
𝑎4

𝑟
+ 2𝑠𝑎14 

𝑃12 = 𝑃21 = 𝑎12 + 𝑠𝑡𝑎44 + 𝑠𝑎24 + 𝑡𝑎14 

𝑃13 = 𝑃31 = 𝑎13 + 𝑠𝑢𝑎44 + 𝑠𝑎34 + 𝑢𝑎14 

𝑃22 = −𝑎11 + 𝑡2𝑎44 +
𝑎4

𝑟
+ 2𝑡𝑎24 
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𝑃23 = 𝑃32 = 𝑎23 + 𝑡𝑢𝑎44 + 𝑢𝑎24 + 𝑡𝑎34 

𝑃33 = 𝑎33 + 𝑢2𝑎44 +
𝑎4

𝑟
+ 2𝑢𝑎34 

(Pines, 1973) 

This method removes the singularity about the Earth’s poles. It uses recursive 

relationships to compute the acceleration and gradient of the geopotential, providing a 

solution that is relatively easy to code. However, it does not provide a particularly 

computationally efficient implementation, as it creates a considerable increase in the 

number of function evaluations required (Casotto et al., 2007). 

2.3 Compiler Optimizations 

GNU compilers have built-in functionality to optimize the execution of binaries in 

terms of speed. These compiler flags number in the hundreds, with each having the 

potential to decrease the runtime of a program. Therefore, the European Organization for 

Nuclear Research, or Conseil Européen pour la Recherche Nucléaire (CERN) in French, 

partnered with industry to form CERN openlab to investigate which compiler flags are 

most likely to improve the runtime of C++ code running on a CPU (Botezatu, 2012). This 

study produced a list of 17 compiler flags that are most likely to improve the performance 

of various programs by at least 1% in comparison to code compiled with the “-O2” 

optimizations enabled. The resulting list, along with high-level descriptions, is presented 

in Table 3: 
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Table 3. Compiler flags with description (Botezatu, 2012) 

- O3 -O2 optimizations plus more aggressive optimizations 

for maximum speed like:  

 Loop unrolling and instruction scheduling 

 Code replication to eliminate branches  

 Padding the size of power two arrays to allow 

more efficient cache use 

-ipo Enables interprocedural optimizations between files. 

When this flag is enabled, the compiler performs inline 

function expansion for calls to functions defined in 

separate files. 

-opt-ra-region-strategy=routine The register allocator creates a single region for each 

routine. 

-ip Enables additional interprocedural optimizations for 

single-file compilations. 

-opt-ra-region-strategy=block The register allocator partitions each routine into one 

region per basic block. 

-funroll-all-loops Unroll  all  loops  even  if  the number of iterations is 

uncertain when the loop is entered. 

-nolib-inline Disables inline expansion of standard library or 

intrinsic functions.  

-inline-forceinline Specifies that an inline routine should be inlined 

whenever the compiler can do so.  
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-opt-class-analysis Determines whether C++ class hierarchy information 

is used to analyze and resolve C++ virtual function 

calls at compile time.  

-opt-streaming-store-always Enables generation of streaming stores for 

optimization. The compiler optimizes under the 

assumption that the application is memory bound. 

-ansi-alias Assumes that the program adheres to ISO C Standard 

aliasing rules. This allows the compiler to optimize 

more aggressively. If the code does not adhere to these 

rules then it can cause the compiler to generate 

incorrect code. 

-opt-prefetch=4 Enables prefetch insertion optimization, with 

optprefetch=4 being more aggressive. 

-falign-functions A align functions on an optimal byte boundary. 

-unroll-aggressive This option enables aggressive, complete unrolling for 

loops with small constant trip counts. 

-fno-inline-functions It is the opposite of finline-functions which is enabled 

in O2 and O3. 

-opt-block-factor=16 Loop-blocking factor=16. Loop blocking optimization 

is part of the High Level Optimizations in Intel 

compiler.  

-opt-block-factor=2 Loop blocking factor = 2. 
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The “-O” series of compiler flags contains several different optimizations, making 

it particularly useful. It consists of three primary compiler flags: “-O1”, “-O2”, and “-O3”, 

with each level including all optimizations of its predecessor. That is, the “-O2” flag 

contains all optimizations of the “-O1” flag, and the “-O3” flag contains all optimizations 

of the “-O1” and “-O2” flags (Free Software Foundation, 2017).  

Passing any version of the “-O” flag to compiler enables several optimizations that 

maximize the speed of the executable. The compiler will determine if a function can be 

inlined. When this occurs, the compiler replaces a function call in the code with a copy of 

the function itself.  Loops are also optimized. The instruction and memory accessing 

overhead of iterating through loops can be decreased be adding code to the body of the 

loop through a process known as loop peeling, which enables the loop to iterate over larger 

increments. Consider the following example. The original for loop iterates 16 times, 

incrementing by one each time. The optimized version, however, iterates only four times 

because it increments by four each time.  

Original: 

 

for(int i = 0; i < 16; i++) 

{ 

X[i] = i*i; 

} 

 

Optimized: 

for(int i = 0; i < 16; i+4) 

{ 

X[i]   = i*i; 

X[i+1] = (i+1)*(i+1); 

X[i+2] = (i+2)*(i+2); 

X[i+3] = (i+3)*(i+3); 

} 



www.manaraa.com

29 

Loops are also optimized by predictive commoning. The predictive commoning 

optimization enabled by the “-O3” compiler flag tells the processor to reuse computations 

calculated by the 𝑁𝑡ℎ iteration in a loop for the (𝑁 + 1)𝑠𝑡 iteration (Free Software 

Foundation, 2017). All 14 optimizations included in the “-O3” compiler flag, along with 

high-level descriptions, are presented in Table 4: 

Table 4. “-O3” Compiler Optimizations with Descriptions (Free Software 

Foundation, 2017) 

-finline-functions  Considers all functions for inlining. 

-funswitch-loops  Moves branches with loop invariant 

conditions out of the loop. 

-fpredictive-commoning  Reuses computations (especially memory 

loads and stores) performed in previous 

iterations of loops. 

-fgcse-after-reload  Performs redundant load elimination pass 

after reload. 

-ftree-loop-vectorize  Performs loop vectorization on trees. 

-ftree-loop-distribution  Improves cache performance on big loop 

bodies and allows for further loop 

optimizations. 

-ftree-loop-distribute-patterns  Performs loop distribution of patterns that 

can be code generated with calls to a 

library. 
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-floop-interchange Improves cache performance on loop nest 

and allows for further loop optimizations. 

-fsplit-paths  Improves dead code elimination and 

common subexpression elimination. 

-ftree-slp-vectorize  Performs basic block vectorization on 

trees. 

-fvect-cost-model  Alters the cost model used for 

vectorization. 

-ftree-partial-pre  Makes partial redundancy elimination 

more aggressive. 

-fpeel-loops  Peels loops for which there is enough 

information that they do not roll much. 

-fipa-cp-clone Performs function cloning to make 

interprocedural constant propagation 

stronger. 

2.4 Parallel Computing 

Most computer programs are designed to execute code in a serial manner. Single-

core CPUs usually employ this type of architecture. This changed, however, when the 

theoretical limits of the CPU began to be reached (Frank, 2002). This caused focus to shift 

away from improving CPU performance towards using many-core processors to execute 

code in parallel (Asanovic et al., 2006). 
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According to Williams (2012), there are two primary ways to employ parallel 

computing. The first is task parallelism. When using this method, a single task is divided 

into discrete, independent tasks that can be computed simultaneously. Task parallelism is 

useful when a single data set must be operated on by 𝑁 different instructions, resulting in 

𝑁 different data sets. The second method for computing in parallel is data parallelism. This 

method is used when multiple pieces of data must be operated upon by a single instruction. 

Most vector and array operations fall under this category. Both methods utilize a machine’s 

multiple processors to decrease the overall runtime of an application (Williams, 2012). 

In the early decades after its inception, the only way to perform parallel processing 

was to manually code applications for concurrent execution using vendor-supplied, 

nonstandard libraries or language extensions. This meant that developers would have to 

invest significant time, effort, and costs into reengineering complex software applications 

to utilize parallel architectures without knowing whether desired efficiencies and reduced 

runtimes would be achieved. To overcome this barrier, programming languages had to be 

adapted and extended to support multithreaded functionality (Hack, 1989). 

2.4.1 CUDA 

In 2006, NVIDIA developed a computer architecture for data parallelism called 

Single Instruction, Multiple Threads (SIMT) which combined multithreading with an array 

of multiprocessors (NVIDIA (B), 2017). The first system of this kind was also invented by 

NVIDIA and used the G80 GPU.  While the GPU was initially intended to render three-

dimensional images on a display for the gaming industry, its scalable array of processors 

was a natural fit for problems that could be solved using data parallelism. Researchers 
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began employing GPUs for more general high-performance computing (HPC) tasks, 

coining the term General-Purpose GPU (GPGPU) (NVIDIA (B), 2017). 

Soon after, NVIDIA released their Compute Unified Device Architecture (CUDA) 

based on the SIMT paradigm. CUDA, coupled with the NVIDIA CUDA compiler (nvcc), 

was the first C language extension that gained widespread traction among users wishing to 

take advantage of GPUs for general purpose computing. It allowed engineers to disregard 

the underlying graphical concept for which the GPU was originally intended and instead 

utilize it as a true GPGPU (NVIDIA (B), 2017). 

In CUDA, the CPU and GPU are known as the Host and Device, respectively. 

Maintaining the logical distinction between Host and Device as two separate entities 

enables CUDA to employ a heterogeneous programming model where threads are executed 

on a physically separate device. This model assumes that the Host and the Device maintain 

their own separate memory and that the Host directs the Device on which functions and 

data to operate. In other words, the Host begins the program, configures the number of 

threads to be executed, and then calls parallelized Device functions for the Device to 

process (NVIDIA (B), 2017). 

CUDA extends C/C++ to allow users to define functions, or kernels, that are 

executed on the Device, meaning they can utilize the GPU’s array of processors. When 

called, kernels can launch thousands of threads simultaneously, instead of being executed 

as a single thread as in a serial implementation. Kernels can use two different declaration 

specifiers, __global__ or __device__. Kernels using the global declaration specifier 

are called from the Host and executed on the Device, while kernels using the device 

declaration specifier are called and executed on the Device (NVIDIA (B), 2017). 
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To manage its heterogeneous programming model, CUDA adopts three 

fundamental abstractions: a hierarchy of thread groups, a hierarchy of GPU memory, and 

barrier synchronization. CUDA’s thread hierarchy allows users to divide complex 

problems into finer-grained sub-problems that can be managed, branched, and executed 

differently depending on their place in the hierarchy. The memory hierarchy allows the 

user to manage what can and cannot be accessed by code running on the GPU. CUDA also 

employs barriers that ensure no single thread goes beyond a certain specified point, wherein 

doing so would result in an attempt to access or manipulate data that is dependent on other 

threads. These three core capabilities aide in partitioning tasks into smaller sub-problems 

that can be solved cooperatively by multiple threads (NVIDIA (B), 2017). 

2.4.1.1 CUDA’s Thread Hierarchy 

CUDA organizes threads into a hierarchy of threads, thread blocks, and grids. 

Threads are the lowest level in the hierarchy. The CUDA built-in keyword, threadIdx, 

is used for indexing each thread launched on the Device. It returns a three-component 

vector enabling individual threads to be identified in up to three dimensions. The next tier 

is referred to as a thread block, and is a collection of multiple threads that are executed 

independently. Thus, thread blocks are required to be structured such that all threads within 

a given block can be executed in any order or in parallel. This requirement allows CUDA 

programs to scale to the number of Streaming Multiprocessors (SMs) on a given Device.  

Thread blocks are indexed using blockIdx which is also a three-component vector. The 

multi-dimensional thread blocks are organized into grids, which are the highest level in the 

thread hierarchy (NVIDIA (B), 2017). 
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The total number of threads being operated upon by a kernel depends on the number 

of grids, blocks, and threads launched.  For instance, if a kernel is launched with number 

of grids, 𝑔, number of blocks per grid, 𝑏, and number of threads per block, 𝑡, the total 

number of threads, 𝑇, is given by the following expression: 

𝑇 = 𝑔 × 𝑏 × 𝑡 

Grids, thread blocks, and threads are illustrated in Figure 7, in which a single grid has six 

blocks, with 12 threads per block, resulting in 72 total threads: 

 
Figure 7. CUDA’s Thread Hierarchy (NVIDIA (B), 2017) 

It is important to note that upon launching a kernel, the Device creates, schedules, 

and executes threads in groups of 32 called warps. When an SM is given a thread block to 

execute, it divides it into warps and uses its warp scheduler to schedule each one. SMs 

manage threads in groups of 32 regardless of the number of threads per block; therefore, it 
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is important to adjust block size into multiples of 32 whenever possible (NVIDIA (B), 

2017). Configuring the most efficient number of grids, blocks, and threads is discussed in 

further detail in Section 2.4.4.3.  

2.4.1.2 CUDA’s Memory Hierarchy 

Device memory is divided up into three primary tiers, with the lowest level being 

local memory. Each individual thread has its own local memory. Despite what its name 

implies, local memory’s default physical location resides off-chip, making it inefficient to 

access. However, local variables can be moved to registers located on-chip. The number of 

these 32-bit registers is of course finite, so care must be taken to not exceed the amount of 

registers available. The next level of Device memory is shared memory. Each thread block 

has its own shared memory space that each thread within a block can access. This allows 

thread blocks to work together to perform interdependent tasks such as summations by 

storing and accessing data using shared variables across all threads in a thread block. 

Because multiple threads use shared memory to collaborate, it is low latency. Therefore, 

shared memory resides on-chip, and should be used whenever possible. The highest level 

in CUDA’s memory hierarchy is global memory. Each thread, thread block, and grid can 

access the Device’s global memory. Global memory is the largest memory space, but it is 

inefficient to access due to it being off-chip. In addition to the three primary types of Device 

memory, there are also two read-only memory spaces called texture and constant memory 

that can be used in the same way as global memory (NVIDIA (B), 2017).  CUDA’s primary 

memory hierarchy is shown in Figure 8: 
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Figure 8. CUDA’s Memory Hierarchy (NVIDIA (B), 2017) 

2.4.1.3 Thread Synchronization  

The sharing of data by shared and global memory introduces the same 

synchronization problems that arise in multi-threaded applications. Because threads 

working cooperatively to solve a problem are often dependent on data produced by another 

thread, certain threads can attempt to access this data before it has actually been computed. 

Thus, CUDA employs a built-in function, __syncthreads(). It acts as a barrier that 

no thread can go beyond until all threads within a block or grid have reached it. This barrier 

synchronization is necessary for the collaborative capability of CUDA (NVIDIA (B), 

2017). 
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2.4.2 NVIDIA Jetson TX1 

 Part of the research presented in this thesis investigates runtime performance gains 

that can be achieved by porting existing SP and Geopotential code bases to NVIDIA’s 

Jetson TX1 system-on-module. It consists of a tightly-coupled CPU and GPU on the same 

board, both of which are discussed in this section.  

2.4.2.1 Jetson TX1 CPU 

 The Jetson TX1 module employs a quad Acorn Reduced Instruction Set Computing 

(RISC) Machine (ARM) Cortex-A57 CPU that can achieve an operating frequency of 1.73 

GHz. It has 80 KB of L1 cache per core, resulting in 320 KB of total L1 cache. It also has 

2 MB of shared L2 cache between its four cores. The Cortex-A57 processor core utilizes a 

SIMT architecture, ARMv8-A, that enables the Jetson TX1’s four CPU cores to perform 

multithreaded operations (Otterness et al., 2017). Furthermore, the Jetson TX1’s L2 cache 

is optimized for multithreaded applications by allowing multiple processors to access the 

L2 simultaneously (NVIDIA, 2016). 

2.4.2.2 Jetson TX1 GPU 

The Jetson TX1’s GPU consists of two Maxwell SMs, each of which contains an 

array of 128 processors, or CUDA cores. The Maxwell architecture improves NVIDIA’s 

control logic partitioning, workload balancing, clock-gating granularity, compiler-based 

scheduling, and number of instructions issued per clock cycle (NVIDIA, 2016). It has 4 

GB of Dynamic Random-Access Memory (DRAM) that can be accessed at 25.6 GB/s. The 

Maxwell architecture also devotes a full 64 KB of L1 cache per SM to shared memory, 

decreasing the time cost in algorithms that depend on sharing variables across thread 
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blocks. Both Maxwell SMs on the Jetson TX1 have a clock speed of 998 MHz. Moreover, 

the Maxwell architecture features 3,072 KB of L2 cache which is larger than previous 

designs and results in fewer high-cost accesses of global memory (NVIDIA, 2016). 

GPUs are typically divided into two categories: discrete or integrated. A discrete 

GPU is a stand-alone device that must be manually connected to a CPU in order for it to 

be utilized for parallel computing. The Jetson TX1 falls into the integrated category, where 

the CPU and GPU are built onto a single board and share DRAM. The Jetson TX1’s 4GB 

of shared DRAM give it a wider range of mechanisms to transfer data to and from the 

Device (Otterness et al., 2017). 

 
Figure 9. Block Diagram of the Jetson TX1 Development Kit (NVIDIA, 2016) 

The Jetson TX1 has a compute capability of 5.3. This is not to be confused with the 

version of CUDA that is deployed on the Jetson TX1 (i.e., CUDA 5.5, CUDA 6.0, etc.), as 



www.manaraa.com

39 

the compute capability of a device represents its SM version, not its CUDA version. Thus, 

the compute capability specifies the capabilities supported by the GPU hardware 

implementation (NVIDIA (B), 2017). 

A compute capability of 5.3 tells the compiler that the Device has 128 CUDA cores 

per SM and four warp schedulers at its disposal. When a kernel is launched, the SM 

distributes all warps between the four schedulers. Every time an instruction is issued, each 

individual scheduler issues the instruction to the next warp in the queue (NVIDIA (B), 

2017). 

A device’s compute capability also dictates how kernels can be configured and 

executed. Devices of compute capability 5.3 can have a maximum of 16 grids present on 

the Device. It allows for up to 1024 threads per thread block, and up to 2048 threads on a 

single SM at a time. A complete list of technical specifications for compute capability 5.3 

can be found in Appendix A. 

2.4.3 NVIDIA Jetson TX2 

 The software being evaluated for this thesis will also be deployed on the Jetson 

TX2. It is the newest release of the Jetson TX series. The following sections highlight the 

primary differences between the Jetson TX1 and TX2.  

2.4.3.1 Jetson TX2 CPU 

 The CPU on the Jetson TX2 consists of six cores. Four of the six cores are the same 

as the Jetson TX1 CPU cluster, and the remaining two cores are the Denver 2 dual-core 

CPU cluster. The Denver 2 cluster is optimized for single-thread performance. The Denver 

2 cores are also linked together via high-performance coherent interconnect fabric that 
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allows for seamless multiprocessing. All six of these cores have a clock speed of 2.0 GHz 

(NVIDIA (A), 2017). 

2.4.3.2 Jetson TX2 GPU 

The Jetson TX2’s integrated GPU consists of two Pascal SMs, each consisting of 

128 CUDA cores. The Pascal SM architecture employed by the TX2 improves upon the 

Maxwell architecture. Each CUDA core on the Jetson TX2’s GPU operates at a frequency 

of 1.3 GHz. The TX2 also increases the amount of DRAM from 4 GB to 8 GB and more 

than doubles the memory bandwidth from 25.6 GB/s to 59.7 GB/s as compared to the TX1. 

The size of the L2 cache was increased to 4096 KB. Each Pascal SM comes equipped with 

32 CUDA cores specifically designed for double-precision computing. The Jetson TX2’s 

GPU has a compute capability of 6.2. A complete list of technical specifications for 

compute capability 6.2 can be found in Appendix A. 

 
Figure 10. Block Diagram of the Jetson TX2 Development Kit (NVIDIA (A), 2017) 
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2.4.4 APOD Design Cycle 

 Even though CUDA was designed to be intuitive to C/C++ programmers, 

parallelizing existing software applications can still be a challenging task requiring 

developers to front significant development efforts with little guarantee of return on 

investment. Therefore, NVIDA introduced an iterative software development cycle to 

guide programmers in efficient development of parallel applications. The Assess, 

Parallelize, Optimize, Deploy (APOD) design cycle enables developers to identify aspects 

of their code that could see performance gains from GPU acceleration, realize those gains, 

and begin deploying the GPU-accelerated software into operational systems as early as 

possible (NVIDIA (C), 2017). 

2.4.4.1 Assess 

The first step in reengineering an existing software application to benefit from 

parallel computing is to determine which portions of code are most time-intensive 

(NVIDIA (C), 2017). Developers should create profiles to identify bottlenecks, or hotspots, 

in the program that can be analyzed to determine their suitability to be parallelized. This 

step in the design cycle prevents developers from investing time parallelizing portions of 

code that would likely have minimal impact on the overall performance of the application 

(NVIDIA (C), 2017). 

An application profile details the functions where a program spends its time. This 

allows the developer to identify which routines are most time consuming, which guides the 

developer in determining which aspects of a program are good candidates for 

parallelization (NVIDIA (C), 2017). 
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NVIDIA’s profiling tool, nvprof, was used to support this research. nvprof is 

NVIDIA’s version of gprof and can produce several different application profiles, with 

the flat profile being the most applicable. The flat profile lists a program’s total execution 

time by function. An example flat program is presented in Figure 11: 

 
Figure 11. Flat Profile Produced by nvprof (NVIDIA (C), 2017) 

Figure 11 shows that the genTimeStep function took an average of 0.02 seconds to 

execute. However, this information alone does not indicate whether this function is a 

potential hotspot. Since genTimeStep was called 7,208 times, it makes up the largest 

portion of time spent by the program, and is a potential candidate for parallelization 

(NVIDIA (C), 2017). 

2.4.4.2 Parallelize 

 Once hotspots have been identified, software developers can parallelize the code 

(NVIDIA (C), 2017). The objective of this step is not to produce a perfectly optimized 

parallel implementation, but to investigate whether a certain hotspot has the potential for 

parallelization (NVIDIA (C), 2017). 
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 Serial code is often structured in such a way that does not expose its inherent 

parallelism. Therefore, developers must restructure their routines to expose their inherent 

parallelism, if any exists. For example, recursive loops can often be restructured to use a 

deterministic solution, disabling dependence of previous iterations (NVIDIA (C), 2017). 

 Verification must also be accomplished in this step to ensure the hotspot was 

properly parallelized. Developers must verify parallel implementations yield identical 

results or results within some error bound. Unexpected results often arise from floating-

point values due to how they are computed and stored; thus, identical results are often 

unattainable in these instances and some small epsilon can be used depending on the 

application’s accuracy requirements (NVIDIA (C), 2017). 

2.4.4.3 Optimize 

Poorly structured parallel programs often result in slower runtimes than serial 

implementations, or fail to compile at all. Liberal usage of expensive memory transfers and 

accesses, improperly partitioning tasks, or having an incorrect understanding of the 

Device’s hardware architecture are often the culprits behind these instances. In order to 

ensure parallel code is being implemented effectively, developers must take full advantage 

of all techniques, features, and tools available at their disposal (NVIDIA (C), 2017). 

Parallelized kernels may not be properly structured to take full advantage of the 

GPU’s computing power. Thus, after the parallelization of a hotspot has been shown to be 

feasible it must be optimized to improve performance (NVIDIA (C), 2017). Unlike the 

‘Parallelize’ step, the ‘Optimize’ step, itself, is iterative. Meaning that for each portion of 

newly parallelized code, the developer should attempt to optimize the code, verify for 
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correctness, and record any performance gains. Optimizations can be as high-level as 

overlapping data transfers between the Host and Device or as granular as fine-tuning 

individual arithmetic operations (NVIDIA (C), 2017). 

Memory Optimization  

 As stated in Section 2.4.1.2, each access to global memory incurs an expensive time 

cost. Hence, mitigating the cost of these accesses is often the single most important 

performance consideration when optimizing a CUDA application (NVIDIA (C), 2017). 

Programmers can lessen the impact of accessing data from memory by coalescing multiple 

memory accesses into single transactions and by storing data in the Device’s more-efficient 

shared memory (NVIDIA (B), 2017). 

Coalescing groups of reads or writes of multiple data items into a single operation 

distributes the memory access cost across the entire group, versus having individual cost 

for each memory access. This technique is demonstrated below by using the simple access 

pattern (NVIDIA (C), 2017). In this access pattern, the kth thread accesses the kth data 

element. Thus, if the threads of a warp access adjacent 4-byte floating-point variables, 

which equals a single 128B L2 cache line, the processor will service all 32 threads with a 

single memory access. In Figure 12, the red rectangle indicates a single 128-byte L2 cache 

line that can be coalesced into a single memory transaction: 

 
Figure 12. Coalesced Global Memory Access (NVIDIA (C), 2017) 
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 The second technique in mitigating the time cost of accessing data from memory is 

to use shared memory. Shared memory is designed with high bandwidth and low latency, 

as it is used by multiple threads to cooperate across thread blocks. To achieve this, it is 

divided into 32 equal-sized banks that can be accessed simultaneously, allowing all 32 

threads in a warp to access the same data at the same time. Furthermore, when multiple 

threads within a block need to access the same global memory addresses, shared memory 

can be used to access global memory only once and in an automatically coalesced fashion. 

This resulting efficiency makes shared memory the most preferred memory type when 

optimizing a kernel’s memory accesses (NVIDIA (C), 2017). 

When utilizing shared memory, developers must be careful to minimize bank 

conflicts (NVIDIA (B), 2017). Bank conflicts occur when n threads attempt to access the 

same memory bank simultaneously, causing the memory accesses to be serialized, 

decreasing the bandwidth by a factor of n. Threads in a single warp, however, are an 

exception. When threads in the same warp attempt to access the same shared memory bank, 

copies of the data being accessed are broadcasted to each thread requesting it. This is 

another reason blocks should be organized into multiples of 32 threads whenever possible 

(NVIDIA (C), 2017). 

Because constant memory is stored in an on-chip cache, it is very efficient under 

certain conditions. If every thread within a warp accesses a single or a few memory 

locations in the constant cache, a broadcast occurs, which can be as fast as a register access. 

However, accesses to different memory locations in the constant cache are serialized; thus, 

if each thread must access a different memory location, it would take about 32 times as 

long (NVIDIA (C), 2017). 
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Minimizing the Impact of Data Transfers 

 Even on integrated GPUs that share DRAM with the CPU, data must be transferred 

to the Device through a Peripheral Component Interconnect – express (PCI-e) bus 

(Otterness et al., 2017), which typically has relatively low bandwidth. Therefore, 

minimizing the time cost incurred when data is transferred from Host to Device and vice 

versa is a high priority when optimizing an application. Strategies such as minimizing the 

number of data transfers, using asynchronous memory copies, and using zero-copy 

memory can help lessen the impact of costly data transfers (NVIDIA (C), 2017). 

 The most direct way to minimize the total time cost incurred from data transfers is 

to do fewer of them. In some instances, functions should be run on the Device even when 

no performance gains are realized, strictly to refrain from transferring data between Host 

and Device. It is up to the developer to experiment with their code in order to determine 

the most efficient way to manage data transfers (NVIDIA (C), 2017). 

 Developers utilizing a GPU will inevitably need to transfer data between the Host 

and Device. Pinned memory allows for asynchronous transfers that can be used to 

minimize the impact of these transfers. Pinned memory can be allocated without copying 

data into a separate buffer, resulting in a simplified transfer process. It is important to note 

that pinned memory is a scarce resource and must be used sparingly. Furthermore, pinned 

memory takes much longer to allocate. Allocating pinned memory takes on the order of 

three to five orders of magnitude longer than allocating regular Device memory (Boyer, 

2013). The conventional method of transferring data between the Host and Device using 

the CUDA function cudaMemcpy()is a blocking transfer, meaning the CPU remains 

ideal until the memory transfer is complete. Conversely, asynchronous transfers using 
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cudaMemcpyAsync(),are non-blocking, meaning that the CPU can continue to do work 

while the transfer is being executed.  Asynchronous transfers must be used in tandem with 

pinned memory; hence, they are limited by the amount of pinned memory available 

(NVIDIA (C), 2017). 

 Depending on the program structure, data can often be broken into independent 

chunks and transferred to the Device asynchronously. Since the Host is free to do work 

while a data transfer is being executed, the Host can launch kernels that will be queued up 

to execute immediately after the data on which they are dependent is transferred. 

Furthermore, some devices can perform asynchronous memory transfers concurrently with 

kernel executions. When this occurs, the 𝑘th  kernel executes while the data needed by the 

𝑘th + 1 kernel is being transferred. Overlapping kernel execution and data transfers can 

result in faster completion times, as illustrated in Figure 13:  

 
Figure 13. Concurrent Data Copy and Kernel Execution (NVIDIA (B), 2017) 

The top “Copy data, Execute” represents the conventional sequential blocking 

method, in which the Host remains idle until the data transfer is complete. The bottom 

shows the concurrent method in which kernels can execute while other data is being 
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transferred, resulting in increased runtime performance. The transfers should still be 

combined whenever possible, as each transfer has intrinsic overhead (NVIDIA (C), 2017). 

On integrated GPUs like the Jetson, the GPU has access to the CPU’s DRAM. This 

shared DRAM allows developers to utilize a feature called zero-copy memory. Zero-copy 

memory enables the passing of pointers to shared memory where data used by the kernel 

is located, which eliminates the need to explicitly transfer data to and from the Host and 

Device (NVIDIA (B), 2017). Zero-copy does not allow for the caching of data on the 

Device, meaning each time the data is accessed through zero-copy, it must be accessed off-

chip in DRAM. Therefore, zero-copy should only be used for data that is used sparingly 

on the Device (Otterness et al., 2017). 

Maximizing Occupancy 

 In order to maximize performance, the multiprocessors of the Host and Device 

should be kept as busy as possible. A poorly structured application with multiple idle 

processors will likely result in sub-optimal performance (NVIDIA (C), 2017). Therefore, 

it is imperative to organize an application to use threads and blocks in such a way that 

achieves the maximal occupancy of the available hardware. Occupancy can be summarized 

as the ratio between the number of active warps per multiprocessor and the maximum 

number of possible active warps. Consider compute capability 5.3, which can support up 

to 64 active warps. This means 64 active warps per SM must be present in order for the 

SM to be fully occupied. Several factors can improve occupancy, such as using concurrent 

kernel executions, using the proper number of threads per block and registers per thread, 

minimizing register dependencies, and using the proper amount of shared memory per 

block (NVIDIA (C), 2017). 
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 To minimize the number of idle processors on an SM, independent kernels can be 

executed concurrently to ensure occupancy is being maximized. If a kernel is only using 

50% of an SM’s processors, another kernel can be launched to utilize the remaining 

processors. Overlapping kernel execution enable SMs to be fully occupied, even when 

single kernels only use a fraction of an SM’s resources. Note that Compute Capability 5.3 

supports up to 16 kernels executing on an SM simultaneously (NVIDIA (C), 2017). 

 Because warps are groups of 32 threads, SMs are designed to handle multiples of 

32 threads at once. For example, Compute Capability 5.3 and 6.2 can each handle up to 

2048 (i.e., 32 × 64) threads per SM. This design pattern requires the number of threads per 

block to be in multiples of 32 to fully maximize an SM’s occupancy (NVIDIA (C), 2017). 

 The number of 32-bit registers on an SM can be a limiting factor when maximizing 

occupancy. Because register storage enables the low-latency access of local variables by 

keeping them on-chip, it is tempting to partition blocks such that they use enough registers 

to store all of their local variables. However, registers are a limited asset; if too many 

registers are being used by a thread, the number of resident thread blocks on the SM is 

lowered, which lowers occupancy. Therefore, blocks must be partitioned in a way that they 

take advantage of registers’ low-latency for local variables while still maintaining the 

highest occupancy possible. It is also important to note that since registers are 32 bits, a 

single register can store a single int (32 bits long) while it takes two registers to store a 

single double (64 bits long) (NVIDIA (C), 2017). 

 Register dependencies can also adversely affect occupancy. A register dependency 

occurs when an impending instruction requires the result of a calculation stored in a 

register. Because the current latency on CUDA-enabled devices is 24 cycles, threads must 
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wait 24 cycles before accessing the data stored on a register. Thus, register dependencies 

can force threads to stall as they await the data on a register to become available (NVIDIA 

(C), 2017). 

 Shared memory is also a potential limiting factor when calculating occupancy. 

Much like using registers to store local variables, shared memory should be utilized to the 

maximum extent possible due to its low-latency memory access. It too, however, is a scarce 

resource and can limit the amount of resident warps on an SM. Hence, developers should 

consider the amount of shared memory available when determining block size (NVIDIA 

(C), 2017). 

 Achieving maximum occupancy through trial and error would be an exhaustive 

task. Therefore, the CUDA Occupancy Calculator should be used to determine the optimal 

number of threads per block, registers per thread, and the amount of shared memory used 

per block. Figure 14 shows the occupancy of the Jetson TX1. This example uses 256 

threads per block, 32 registers per thread, and 8192 bytes of shared memory per block 

(NVIDIA (C), 2017). 
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Figure 14. CUDA Occupancy Calculator 

Minimizing Thread Divergence 

 Because all 32 threads within a warp execute one common instruction at a time, full 

efficiency cannot be achieved if the 32 threads within a warp do not have a common 

execution path (NVIDIA (B), 2017). Control flow instructions such as if, switch, do, 

for, and while can cause threads within a warp to diverge by steering them down 

different execution paths. When this occurs, the warp serially executes each branch path 

taken, disabling all other threads within the warp until the threads converge, resulting in 

slower kernel execution times (NVIDIA (C), 2017). 

 Control flow statements are sometimes necessary in parallel computing, however, 

often utilizing the threadIdx keyword to direct specific threads to perform specific 

tasks. Kernels that require thread-ID-dependent control flow statements should be 

constructed to minimize the number of divergent paths per warp. This can be accomplished 
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by partitioning a thread’s execution path based on the warp to which it belongs, instead of 

its specific thread ID (NVIDIA (C), 2017). 

Instruction Optimization 

 Division and modulo instructions are particularly expensive to perform on a GPU. 

Thus, replacing these instances with equivalent shift operations can result in performance 

gains.  In the case where 𝑛 is a power of 2, (𝑖/𝑛) is equivalent to (𝑖 ≫ 𝑙𝑜𝑔2(𝑛)). For 

modulo operations where 𝑛 is a power of 2, (𝑖 % 𝑛) is equivalent to (𝑖 & 𝑛 − 1). These 

optimizations are considered low-priority, but can provide significant reductions in 

runtimes if a kernel uses a large number of division and/or modulo operations (NVIDIA 

(C), 2017).  

2.4.4.4 Deploy 

 Before moving on to the next hotspot identified in the ‘Assess’ step, the developer 

should deploy the partially reengineered code onto a test system. This allows users to see 

partial performance gains as early as possible and minimizes risk by isolating new bugs 

introduced to the software by providing evolutionary versions of the application (NVIDIA 

(C), 2017).  

 When integrating CUDA files with the “.cu” extension with “.c/.cpp” C/C++ files, 

function names become mangled. This can be avoided by using the extern “C” wrapper 

on relevant functions within the “.cu” file, which ensures the function names remain 

demangled. Once the functions are declared in the C++ header, the functions inside the 

“.cu” files can be called from within the “.cpp” files (Oak Ridge National Laboratory, 

2013).  
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When integrating C/C++ files and CUDA into a single application, the process of 

separate compilation shown in Figure 15 is used.  The “.cu” files contain all CUDA code. 

These files include functions executed on the Host as well as functions executed on the 

Device; thus, nvcc must be used for “.cu” files. All “.cpp” files can be compiled with a 

standard compiler, such as g++.  The object files created by these are then linked together 

using nvcc to create the executable. 

 
Figure 15. Separate compilation process used to combine “.cu” and “.cpp” files 
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3.  Methodology 

This chapter describes the methodology used to implement SP on the Jetson 

TX1/TX2 and the methodology used to test the two hypotheses presented in Section 1.3. 

The steps taken to successfully compile the SP software on the Jetson TX1 and TX2 are 

discussed first, followed by the methods to determine the validity of its solution.  The 

second section discusses the methods for determining the optimal combination of compiler 

flags to apply to SP.  The development of a parallel geopotential model and the methods 

used to determine its validity are then discussed. The final section presents the methods 

used to determine the most efficient implementation of SP on the Jetson TX1/TX2. 

3.1 Implementing Special Perturbations on the Jetson TX1 and TX2 

The first task in completing this research was to implement SP on the Jetson TX1 

and TX2 and verify that it produced the same solution as the Windows version of the 

software. The first step taken to accomplish this was to reorganize the package diagram 

presented in Section 2.1 to reduce redundant dependencies and resolve linkage errors so 

the SP software could compile and run on the Jetson TX1/TX2. The validity of the Linux 

version of SP was then determined to ensure it converged to the correct solution. 

3.1.1 Compiling Special Perturbations on the Jetson TX1 and TX2 

 The package diagram presented in Section 2.1 shows two primary issues that had 

to be overcome in order to run SP on the Jetson TX1 and TX2. First, several “.cpp” files 

are directly included in other files. Second, redundant dependencies unintentionally add to 

the complexity of the code by requiring more files than necessary. These issues can result 
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in increased compilation times or compilation failure; therefore, several components of the 

software had to be restructured. 

 The SP software includes three different routines used to read the three primary 

types of data needed for testing and operation. The ReadMyTruth, ReadIneritalRData, and 

ReadSTK routines were each contained in their own “.cpp” file. These routines are used in 

the main function to read observational data, meaning their files had to be included in 

SPLstSq.cpp. Since each of these files only contains a single function, they were easily 

changed to header files so they could be included in SPLstSq.cpp without issue.  

 Routines contained in Hamming.cpp and Observation.cpp are also used in the main 

function. These files, however, both contain multiple functions and are relatively large. For 

these reasons, Hamming.h and Observation.h header files were added so the functions 

contained in Hamming.cpp and Observation.cpp could be included in SPLstSq.cpp. 

 The two routines developed to account for the effects of air drag were contained 

within the Atmosphere.cpp file. These functions are used in the dynamics model which is 

comprised of the EarthTruth.cpp and EarthTruth.h files. In order to prevent the inclusion 

of the Atmosphere.cpp in another file, the two air drag routines it contained were added to 

EarthTruth.cpp and EarthTruth.h. This removed the necessity of including a .cpp file in 

another file.  

The SPLstSq.cpp file originally included two header files, LinearEquations.h and 

SingularValue.h, that only included other files. The LinearEquations.h file included the 

numerical.h and ludcmp.h files, while the SingularValue.h file included the numerical.h 

and svd.h files. These two files were removed from the codebase and the files they 

contained were included directly in SPLstSq.cpp.  
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The TwoBodyProblem.h and Observartion.h files contained the class definitions 

and functions in the same file. Therefore, the TwoBodyProblem.cpp and Observartion.cpp 

files were added to separate the two. Furthermore, include guards (e.g., #ifndef, 

#endif) were added to each header file used in the software. Include guards prevent 

duplicate expansion that can result in linkage errors. These changes are summarized in the 

following restructured package diagram: 

 
Figure 16. Updated Package Diagram of the SP Software 

3.1.2 Verifying for Correctness 

Once the SP software successfully compiled and ran on the Jetson TX1 and TX2, 

its accuracy in comparison to the Windows version had to be verified.  The state vector of 

the spacecraft is comprised of seven elements. The first three elements are the position 

component, given in XYZ dimensions. The second three elements are the velocity 

component, also given in XYZ dimensions. The seventh element is the B* air drag 



www.manaraa.com

57 

coefficient. The following parameters were used as inputs for both the Windows version 

and the version running on the Jetson TX1/TX2: 

Table 5. Initial State Vector 

Position X: -3.71191588114069e+3 

Position Y: -5.86581648105739e+3 

Position Z: 2.94244366723117e-1 

Velocity X: 5.63178840625886e+0 

Velocity Y: -3.56186511007924e+0 

Velocity Z: 3.6161019950714e+0 

B* (Air Drag):  0.00e+0 

 

 

Table 6. Additional Input Parameters 

Epoch Time (MJD): 1.51995746598202e+4 

D&O of Geopotential: 20 

Sea Level Pressure: 1.01325e+5 

Rejection Limit (km):  1.00e+4 

 

 

Through each iteration of SP, each element of the state vector is adjusted until they 

converge on the solution. Since this test case converges on the fourth iteration, there are 

four additional state vectors in the Windows version. These state vectors were used as the 

success criteria for determining if SP produced the correct solution. Each dimension of the 

state vector’s position and velocity vectors output by the Linux version, along with B*, was 
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compared to the output of the Windows version to determine if they converged to the same 

solution. These results are presented in Section 4.1. 

3.2 Optimizing the Serial Version of Special Perturbations 

 Due to the large number of compiler flags available, testing each one to determine 

if it benefited SP on the Jetson TX1/TX2 was impractical. Thus, only a small subset of 

compiler flags was considered for this research. This section presents the methodology and 

the reasoning used to determine which combination of compiler flags resulted in the fastest 

runtimes.  

3.2.1 Determining the Optimal Combination of Compiler Flags 

 The list produced by CERN openlab (Section 2.3, Table 3) was used to down-select 

from all possible compiler optimizations. The “-nolib-inline” compiler flag was not 

recognized by the compilers used for the Jetson TX1 and TX2; for this reason, it was not 

considered. Furthermore, the “-O2” compiler flag was added to the list and compared to 

the initial, unoptimized version of SP running on the Jetson TX1/TX2 instead of using the 

“-O2”-optimized version as the initial condition, as in the CERN openlab study (Botezatu, 

2012).  

 The method for assessing the significance of the speedup was taken from the CERN 

openlab study. That is, the benefit of a certain compiler optimization was determined to be 

‘significant’ if it resulted in a ≥ 1% reduction in runtime when compared to previous 

versions. This experiment was considered a success if any combination of compiler 

optimizations were found to reduce the runtime of SP by at least 1%.  
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The runtime of SP on the both Jetsons was very stable. Therefore, accurate timing 

statistics could be measured by running the SP program only 50 times. Degree and order 

of 20 was used to test all compiler flags and the standard CPU timer, clock(), was used 

to accurately measure runtimes.  

3.2.2 Testing the First Hypothesis 

 The first hypothesis presented in this thesis was to determine if a combination of 

the selected compiler flags could be applied to SP such that it decreased its runtime 

compared to the initial serial version on the Jetson TX1/TX2. Once the optimal 

combination of compiler flags was determined, this hypothesis was tested by running both 

versions of SP at multiple degrees and orders of the geopotential. The degrees and orders 

used started at 10 and increased in increments of 5 until degree and order of 50 was reached, 

with SP being run 50 times at each degree and order. This was completed for the initial 

serial and optimized serial versions to attain accurate runtime statistics. Success was 

achieved if the optimized serial version was faster than the initial serial version for any 

degree and order less than or equal to 50.  

3.3 Applying APOD to Special Perturbations  

 The second hypothesis presented in this thesis questions whether the geopotential 

model employed by the SP software could be implemented using parallel computing. To 

accomplish this, the APOD software development cycle is applied to the SP codebase to 

develop a stand-alone parallel version of the geopotential model on the Jetson TX1. Degree 

and order of 50 was used for this experimentation. Next, the parallel geopotential model 

was integrated into the SP software to determine if it converged to the same solution as the 
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Windows version. The runtimes of SP using the parallel geopotential model were then 

compared to the runtimes of the initial serial version running on the Jetson TX1/TX2 to 

determine if any speedup was attained.  

3.3.1 Assessing Special Perturbations for Hotspots 

 The first step taken in applying the APOD software development cycle was to 

assess SP to determine the most time-consuming components of the code. This was 

accomplished using the profiling tool, nvprof. The nvprof profiling tool produced the 

following flat profile: 

Table 7. Flat Profile of SP Produced by nvprof 

% 

Time 

Cum 

Seconds 

Self 

Seconds 

Calls Self 

𝜇𝑠/call 

Total 

𝜇𝑠/call 

Name 

84.68 51.22 51.22 615950 83.15 83.15 Geopotential::geoECR 

8.96 56.64 5.42 615950 8.80 95.08 Dynamics::Rhs 

3.16 58.55 1.91 307940 6.20 196.39 hamming 

2.00 59.76 1.21 615950 1.96 85.11 Geopotential::geoECI 

0.60 60.12 0.36 615950 0.58 0.58 Dynamics::Atm 

0.51 60.43 0.31 615950 0.50 85.70 Dynamics::Hder 

0.07 60.47 0.04 615950 0.06 0.06 GreenwichSiderialTime 

0.02 60.48 0.01 616453 0.02 0.02 SecondsToJulian 
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 The profile shows that the function used by the geopotential model, goeECR, is by 

far the most time-consuming routine, taking just under 85% of the total runtime. Therefore, 

it was the primary focus when attempting to use parallel computing to reduce the runtime. 

3.3.2 Parallelizing the Geopotential Model 

 The second step of the APOD cycle, ‘Parallelize,’ was then applied to the 

geopotential model. CUDA was used to develop a stand-alone version of the geoECR 

routine. The results of the parallel version were then compared to those of the initial serial 

version to verify their correctness.  

The recursion used by Pines Method to calculate the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 arrays 

presented a challenge when attempting to parallelize the model. Deterministic solutions for 

each array were developed to unravel this recursion so each element of the arrays could be 

calculated independently and in parallel. However, the non-recursive methods proved far 

less efficient than the recursive versions. Each non-recursive version used a do-while 

loop to calculate its elements, with the loop iterating up the particular thread’s index. This 

created race conditions that required barriers to synchronize the threads, greatly reducing 

the efficiency of this method. Hence, attempts to calculate these particular arrays on the 

GPU were abandoned, meaning they had to be calculated on the Host and transferred to 

the Device each time the geopotential model was called.  
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The initial parallel implementation followed these general steps: 

Table 8. Steps of Parallel Geopotential Model 

1 Calculate 𝑠, 𝑡, 𝑢, 𝑟 variables 

2 Calculate 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 vectors 

3 Allocate Device memory (x19) 

4 Transfer inputs from Host to Device (x5) 

5 Launch kernel 

6 Transfer outputs from Device to Host (x14) 

7 Sum outputs 

8 Calculate 𝑓𝐸𝐶𝑅 and 𝑃 matrices 

 

 

Where the inputs consisted of the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 vectors and the 𝑟 variable and the 

outputs consisted of the potential 𝑈 and the partially summed coefficients 𝑓𝑎𝑐1 through 

𝑓𝑎𝑐44. 

The size of the arrays used to compute the geopotential are determined by the 

degree and order of the model. These matrices are lower triangular with their upper halves 

only containing zeros. However, for ease of implementation, the initial parallel kernel was 

configured such that each thread block corresponded to a particular row and each thread to 

a particular element in that row. In other words, for a degree and order of nine, the initial 

parallel version launched 9 + 1 = 10 blocks with 10 threads each, with almost half of the 

threads remaining idle. This is shown in Figure 17: 
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Figure 17. Representation of the Original Parallel Geopotential Model 

Device memory was allocated using the cudaMalloc()function. For the initial 

kernel, the Device memory for each individual input and output was allocated separately, 

for a total of 19 separate calls to cudaMalloc(). The inputs were then transferred from 

Host memory to Device memory using cudaMemcpy().  

The kernel also required the use of the spherical harmonic coefficients of  𝐶 and 𝑆. 

Since these matrices remain constant, they were allocated using __device__ memory, 

meaning that they only needed to be allocated and transferred once. The kernel used these 

two matrices along with the inputs to calculate the remaining arrays (e.g., the 𝐷, 𝐸, 𝐹, 𝐺, 

and 𝐻) needed to compute the geopotential. These arrays were used to calculate the outputs 

of the kernel. All the outputs within a single block were summed to a single value on the 

Device. The outputs were individually transferred from the Device to the Host, where they 

were further summed up and used to calculate the 𝑓𝐸𝐶𝑅 and 𝑃 matrices.  
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The potential 𝑈 variable and the 𝑓𝐸𝐶𝑅 and 𝑃 matrices are the primary outputs of 

the geopotential model. Thus, these elements were compared to the results of the serial 

version to determine if the parallel version was correct.  

3.3.3 Optimizing the Parallel Geopotential Model 

 Like the APOD process as a whole, the ‘Optimize’ step, itself, is iterative. This step 

was repeated until all optimization strategies were exhausted. The runtimes of each 

optimization were recorded to measure any performance gains and the results were verified 

against the initial serial version to ensure correctness.  

 As stated in Section 2.4.4.3, CUDA enables the use of a technique called concurrent 

execution that allows the CPU to continue doing work while transferring data between the 

Host and Device or while a kernel is being executed. There was little work for the CPU to 

accomplish while the geopotential kernel was executing; however, there was some 

potential for the CPU to remain busy while transferring data. This method of using 

asynchronous data transfers required the use of pinned memory, which must be allocated 

using cudaMallocHost(). However, allocating pinned memory is much slower than 

allocating pageable memory. This offset any time saved through concurrent execution. 

Therefore, these efforts were abandoned.  

3.3.3.1 First Iteration: Minimizing Effects of Data Transfers 

 For the first iteration of the ‘Optimize’ step, the focus was to minimize the impact 

of data transfers between the Host and Device. First, all inputs were combined into a single 

vector to reduce the number of allocations and transfers. The same was done for all outputs. 

Second, the use of __device__ memory was prioritized to allow data to be allocated 
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only once throughout the lifetime of the application. This design was preferred because the 

SP program calls the geopotential routine thousands of times per iteration.  

Even though the same amount of data was being allocated and transferred, 

minimizing the discrete number of allocations and data transfers is important because of 

the inherent overhead in each allocation and transfer. The 𝑠, 𝑡, 𝑢, and 𝑟 variables were 

combined with the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, and 𝑐𝑖𝑚𝑎𝑔 matrices into a single vector. Similarly, the 

potential 𝑈 and all partial coefficients of acceleration were combined into a single output 

vector. This decreased the total number of memory allocations and data transfers needed 

each time the geopotential routine was called from nineteen to two. 

Because the SP algorithm computes the geopotential thousands of times over the 

course of a single iteration, the memory used for the input and output vectors could remain 

allocated and be used multiple times. This approach was already being used for the 𝐶 and 

𝑆 matrices and was extended to the input and output vectors by declaring them as 

__device__ memory. Unlike 𝐶 and 𝑆, which remain constant, the input and output 

vectors had to be transferred to the Device each time the geopotential was calculated. 

However, this still prevented the need to re-allocate memory for the inputs and outputs.  

3.3.3.2 Second Iteration: Maximizing Occupancy 

 The second iteration of the optimization cycle focused on maximizing the 

occupancy of the GPU. The kernel was restructured to account for the use of lower 

triangular matrices, which left almost half of the threads idle in the original kernel. The 

CUDA Occupancy Calculator was then used as a guide to ensure proper utilization of the 

GPU’s computing resources.  
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 In the original parallel kernel, each row corresponded to a thread block and each 

element in the row corresponded to an individual thread. Because these matrices are lower 

triangular, the first row only contained one element, with the rest being zeros. Thus, in the 

original configuration, only one thread in the first thread block accomplished any work. 

This was changed to eliminate the idle threads. However, the vectors still needed to be 

traversed as though they were square matrices. Therefore, the 𝑟𝑜𝑤𝐼𝑑𝑥 and 𝑐𝑜𝑙𝐼𝑑𝑥 vectors 

were created to allow each thread to recall its original position in the matrix. Since these 

vectors remain constant throughout the lifetime of the application, they were declared as 

__device__ vectors so they only had to be allocated and transferred to the Device once.  

 The CUDA Occupancy Calculator was used to ensure the maximum occupancy 

was achieved within the given hardware limitations. The first limiting factor was the 

number of physical CUDA cores on the GPU. GPUs of Compute Capability 5.3 and 6.2 

both have two SMs with 128 CUDA cores each, for a total of 256. This is the maximum 

number of active threads possible. By design, it is also a multiple of 32, meaning it is 

aligned with the amount of threads per warp. For these reasons, the number of threads per 

block was changed to 256.  
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Figure 18. Improved Occupancy of Parallel Geopotential Model for the Jetson TX1 

The second limiting factor was the amount of __shared__ memory available for 

each thread block. This type of memory is the most efficient and should be used as much 

as possible. However, if the recommended amount of shared memory is exceeded, the GPU 

will prevent other blocks from executing until shared memory is freed, thus reducing 

occupancy.  

Figure 19 shows how occupancy is affected by the amount of shared memory when 

each block has 256 threads. When block size is 256, up to 8,192 bytes of shared memory 

can be used and 100% occupancy still be achieved. If each block uses 14,864 bytes of 

shared memory, only 50% occupancy is possible. For this reason, the amount of shared 

memory allowed per block was not allowed to exceed 8,192 bytes.  
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Figure 19. Occupancy as a Function of Shared Memory 

These 8,192 bytes of shared memory were divided into four 2,048 byte chunks. 

Since the summation operation requires the use of shared memory, three of the chunks 

were used to allocate shared workspaces to sum up the factors of the partial coefficients. 

These workspaces are reused to calculate the 14 outputs. The input vectors 𝜌, 𝑐𝑟𝑒𝑎𝑙 , and 

𝑐𝑖𝑚𝑎𝑔 are used repeatedly, so the remaining chunk of shared memory was used to store 

these vectors. 

 The third limiting factor of occupancy was the amount of local registers used by 

each thread. With 256 threads per block, 100% occupancy was only achieved when each 

thread used 32 registers or fewer. This was accomplished by passing the –

maxrregcount=32 flag to the compiler that prevented threads from decreasing the 

occupancy by using more than 32 registers.  
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3.3.3.3 Third Iteration: Applying Reduction Operation 

The partial factors calculated on the GPU had to be summed to form the final partial 

coefficients of acceleration. This summation operation was able to be performed in parallel 

on the GPU by using a reduction operation. The following simple parallel reduction routine 

was developed that sums all of the partial factors elements within a given thread block: 

int n = 8; 

int Exp = 1; 

for(int i = 0; i < n; i++) 

{ 

 Exp = Exp*2; 

 if(threadIdx.x % Exp == 0) 

 { 

 facA[threadIdx.x] = 

facA[threadIdx.x]+facA[threadIdx.x+(Exp/2)]; 

 facB[threadIdx.x] = 

facB[threadIdx.x]+facB[threadIdx.x+(Exp/2)]; 

 facC[threadIdx.x] = 

facC[threadIdx.x]+facC[threadIdx.x+(Exp/2)]; 

} 

} 

 

Because the blocks are of size 256, the for loop must iterate log2 256 = 8 times. This 

routine reduced the total number of sequential double-precision arithmetic operations 

required per block from 3,584 to 112. It was further optimized by unrolling the for loop. 

This prevented the need to initialize and calculate intermediary values such as 𝑖 and 𝑛.  

3.3.3.4 Fourth Iteration: Minimizing Thread Divergence  

In order to calculate the partial coefficients, each thread requires the use of the 𝑛th, 

𝑛 − 1st, and 𝑛 − 2nd elements from the 𝑐𝑟𝑒𝑎𝑙 and 𝑐𝑖𝑚𝑎𝑔 vectors, where 𝑛 is the thread’s 

column index. Thus, if statements had to be implemented to ensure any threads with a 

column index of two or less did not attempt to access elements outside of the bounds of the 

vector. This introduced thread divergence that negatively affected the efficiency of the 

kernel.  
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This thread divergence was minimized by zero-padding the 𝑐𝑟𝑒𝑎𝑙 and 𝑐𝑖𝑚𝑎𝑔 vectors. 

That is, the first two elements of these vectors were changed to zeros, and the rest of the 

elements vector were offset by two.  This meant that a thread with a column index of zero 

could access the  0 − 2 = −2nd element without conflict. In the original parallel kernel, 

eight if statements that diverged based on a thread’s column index were required. Through 

zero-padding, this was reduced to three.  

3.3.3.5 Fifth Iteration: Instruction Optimization  

 The reduction operation developed for the kernel used the modulo operator a total 

of 40 times per thread. Although a single invocation of the modulo operator per thread is 

relatively insignificant to the overall runtime of the kernel, 40 invocations of the modulo 

operator can hamper performance. Therefore, each of these instances was changed to the 

equivalent shift operation. Even though this optimization is low-level, the benefit increases 

with the number of threads being executed.  

3.3.3.6 Measuring Performance when Optimizing the Parallel Geopotential Model 

 To ensure each optimization strategy resulted in adequate performance gains, 

accurate runtime statistics had to be calculated for the stand-alone parallel geopotential 

model. To accomplish this, the setup, execution, and post-processing for the parallel 

geopotential model was wrapped in a for loop and iterated 1,000 times. Each time the 

for loop iterated, the runtime was output to a spreadsheet. A shell script was used to repeat 

this process 100 times for each version of the geopotential model, and resulted in 100,000 

data points per version. cudaEvents were used to accurately measure runtime.  



www.manaraa.com

71 

3.3.4 Deploying the Parallel Geopotential Model  

 Once the parallel geopotential was optimized, it had to be integrated into the SP 

codebase in order to determine if it converged to the same solution as the serial version.  

This was accomplished by using extern “C” to ensure the function names in the CUDA 

file were able to be read by the C++ files and by compiling the CUDA file separately from 

the C++ files.  

The CudaConstructor and CallGeoEcrKernel functions were wrapped in extern 

“C” and declared in the Geopotential.h header file. The CudaConstructor function 

transfers the 𝐶, 𝑆, 𝑟𝑜𝑤𝐼𝑑𝑥, and 𝑐𝑜𝑙𝐼𝑑𝑥 vectors to the Device. Because these inputs remain 

constant throughout the lifetime of the application, they only need to be transferred once. 

Thus, the CudaConstructor function is only called a single time. The CallGeoEcrKernel 

function calculates the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, and 𝑐𝑖𝑚𝑎𝑔 vectors, transfers them to the Device, calls the 

kernel, and performs post-processing on the results. The kernel itself, however, was not 

required to use the extern “C” wrapper since the kernel was both declared and called 

from within the CUDA file. The “.cu” file containing the CudaConstructor and 

CallGeoEcrKernel functions were compiled with nvcc, and all “.cpp” files used by SP were 

compiled using g++. The resulting “.obj” files were then linked together with nvcc to form 

the executable.  

3.3.5 Verifying the Parallel Version of Special Perturbations  

 To determine if the parallel geopotential model worked properly, SP had to 

converge to the correct solution using the parallel geopotential model. This verification 

was accomplished using the same methodology described in Section 3.1.2. The solution of 
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the parallel version was compared to the truth data produced by the Windows version of 

SP to determine if the parallel version converged to the correct solution.  

3.3.6 Testing the Second Hypothesis 

 The second hypothesis presented in this thesis was to determine if portions of SP 

could be implemented in parallel on the Jetsons’ GPUs such that it reduced the runtimes of 

SP compared to the initial serial version. This hypothesis was tested using the same 

methodology described in Section 3.2.2, but used cudaEvents in lieu of CPU timers to 

accurately measure the parallel version of the code. Success was achieved if the parallel 

version of SP was faster than the initial serial version for any degree and order less than or 

equal to 50.  

3.4 Determining the Most Efficient Implementation  

 Once the initial serial version of SP was optimized via compiler flags and the 

parallel geopotential model was integrated into the SP codebase, the average runtimes of 

each version of SP on the two Jetsons were compared. Accurate runtime statistics of the 

serial versions of SP were taken using the same methodologies described in Sections 3.2.2 

and 3.3.6.  

Because the implementation of SP used in this research uses geopotential of up to 

degree and order of 50, the degree and order was started at 10 and incremented by 5 until 

50 was reached for the initial serial, optimized serial, and parallel versions of SP. The input 

parameters presented in Section 3.1.2 were used. The results were then compared to one 

another to determine the best way to implement SP on the Jetson TX1 and TX2. The 
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percentage of improvement of the Jetson TX2 over the Jetson TX1 was also compared for 

each version of SP.  
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4.  Analysis and Results 

This chapter presents the results and analysis of the experiments described in 

Chapter III. The first section analyzes the state vectors produced by the initial serial version 

of SP on the Jetson TX1/TX2 compared to the state vectors produced by the Windows 

version. The results of applying different combinations of compiler optimizations to SP are 

discussed in the second section. The third section presents the results of developing and 

optimizing the parallel geopotential model. The results of SP using the parallel geopotential 

model are also analyzed to show that it converged to the correct solution. The final section 

in this chapter compares the runtimes of the initial serial version of SP to the optimized 

serial and parallel versions on the Jetson TX1 and TX2 to determine the most efficient way 

to implement SP on each Jetson. This section also compares the performance of the Jetson 

TX2 over the TX1. 

4.1 Implementing Special Perturbations on the Jetson TX1 and TX2  

The first task completed for this research was to implement the SP software on the 

Jetson TX1 and TX2 such that both converged to the correct solution. This section presents 

the resulting state vectors produced by SP on the Jetson TX1/TX2 compared to truth data 

produced by the Windows version.  

 The test case used in this research iterated through SP a total of four times before it 

converged to the correct solution. Thus, each component of the state vectors produced by 

SP on the Jetson TX1 and TX2 was compared to the truth data at each iteration to determine 

the extent of the deviation.  
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The root-mean-square (RMS) of the position and velocity components of the state 

vectors, as well as the air drag coefficients, over each iteration of SP are shown in Figures 

20-22. Figure 20 shows the RMS for the position component of the state vectors at each 

iteration of SP. Figures 21 and 22 show the RMS for the velocity components of the state 

vectors and the air drag coefficients, respectively. Each of these components of the state 

vectors converge to the solution on the fourth iteration of SP.  

 
Figure 20. RMS of Position Components Converge, D&O = 20 
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Figure 21. RMS of Velocity Components Converge, D&O = 20 

 

Figure 22. Air Drag Coefficients Converge, D&O = 20 
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Table 9 presents the final state vectors produced by SP on the Jetsons. The X- and 

Y- components of the position vector produced by SP on the Jetson TX1/TX2 agree with 

the truth data to the eighth decimal place, while the Z- component agrees with the truth 

data to the seventh decimal place. The X- and Y- components of the velocity vector agree 

with the truth data to the tenth decimal place, while Z- components agree to the eleventh 

decimal place. Finally, the air drag coefficients agree to the eleventh decimal place.  

Table 9. Converged State Vectors Produced by SP 

 Truth Data Jetson TX1/TX2 

Position X: -3.71202483895854e+3 -3.71202483895187e+3 

Position Y: -5.86571445840261e+3 -5.86571445840703e+3 

Position Z: -2.16592610235187e-1 -2.16592605867213e-1 

Velocity X: 5.63172597015199e+0 5.63172597015723e+0 

Velocity Y: -3.56203592928780e+0 -3.56203592927947e+0 

Velocity Z: 3.61614435881406e+0 3.61614435881398e+0 

B* (Air Drag):  1.206715481898e-5 1.20671556188568e-5 

 

 

 The difference between the converged state vector produced by the Jetson 

TX1/TX2 and the truth data produced by the Windows version is presented in Table 10. 

The accuracy of the Jetson TX1/TX2 solution is also given as a percentage of the truth 

data, with the largest deviation from a perfect solution being the Z- component of the 

position vector.  
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Table 10. Accuracy of Jetson TX1/TX2 Converged State Vector 

 Difference % 

Position X: -6.66977939545177e-9 99.9999999998203 

Position Y: 4.42014425061643e-9 100.000000000075 

Position Z: -4.36797401026645e-9 99.9999979833227 

Velocity X: -5.24025267623074e-12 100.000000000093 

Velocity Y: -8.32978130915762e-12 99.9999999997661 

Velocity Z: 7.99360577730113e-14 99.9999999999978 

B* (Air Drag):  -7.99876800265751e-13 100.000006628545 

 

 

 These results show that the initial serial version of SP implemented on the Jetson 

TX1/TX2 converged to the correct solution. Once this task was completed, the two 

hypotheses could be tested.  

4.2 Optimizing the Serial Version of Special Perturbations 

This section presents the results of applying different combinations of compiler 

flags to the initial serial version of SP on the Jetson TX1 and TX2. Only the flags that 

reduced the runtime of SP by at least 1% were included in the final version. Table 3 in 

Section 2.3 was used as the starting point, with the “-nolib-inline” flag deleted and the “-

O2” added to the list. Once the optimal combination of compiler flags was determined, the 

runtimes of the optimized serial version of SP were compared to the runtimes of the initial 

serial version to test the first hypothesis.  
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4.2.1 Determining the Optimal Combination of Compiler Flags 

 Since the impact of the results from this test was the same for the TX1 and TX2, 

only the results from the TX1 are shown in Figure 23. The red line is the runtime of the 

initial serial version of SP, with the “-O2” and “-O3” versions shown in green. For both 

the Jetson TX1 and TX2, only the “-O2” and “-O3” compiler flags resulted in a significant 

reduction in the runtime of SP. 

 
Figure 23. Compiler Optimizations Applied to SP on Jetson TX1, D&O = 20 

 Table 11 shows the results from using the compiler flags recommended by the 

CERN openlab study on both the Jetson TX1 and TX2. Applying the “-O2” flag reduced 

the speed by approximately 78% on both Jetsons, while the “-O3” flag only reduced the 

speed by 72%.  
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Table 11. Compiler Optimizations Applied to SP on Jetson TX1/TX2 

Compiler Flag Mean 

Runtime on 

TX1 (s) 

Speedup 

on TX1 

(%) 

Mean 

Runtime on 

TX2 (s) 

Speedup 

on TX2 

(%) 

None 61.32 -- 53.73 -- 

-O2 13.70 77.66 11.43 78.73 

-O3 17.13 72.06 15.04 72.01 

-ipo 61.35 -0.06 53.78 -0.08 

-opt-ra-region-strategy=routine 61.35 -0.04 53.36 0.70 

-ip 61.31 0.01 53.82 -0.15 

-opt-ra-region-strategy=block 61.36 -0.07 53.73 0.01 

-funroll-all-loops 61.41 -0.15 53.67 0.12 

-inline-forceinline 61.35 -0.05 53.63 0.19 

-opt-class-analysis 61.30 0.03 53.92 -0.34 

-opt-streaming-stores-always 61.32 -0.01 53.80 -0.13 

-opt-prefetch=4 61.35 -0.06 53.82 -0.16 

-falign-functions 61.30 0.03 53.58 0.28 

-unroll-aggressive 61.35 -0.05 53.87 -0.26 

-fno-inline-functions 61.35 -0.05 53.73 -0.01 

-opt-block-factor=16 61.34 -0.03 53.57 0.31 

-opt-block-factor=2 61.39 -0.11 53.58 0.29 
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 The “-O3” flag consists of all the optimizations of the “-O2” flag plus 14 others 

(Section 2.3, Table 4). This inferred that one or more of the additional optimizations 

included in the “-O3” flag was negatively affecting the performance of the application. For 

this reason, another similar test was run in which each optimization of the “-O3” flag was 

individually paired with the “-O2” flag and compared to the “-O2”-optimized version to 

determine its effects on runtime. These results were slightly different for the Jetson TX1 

and TX2; therefore, both sets of results are presented.  

 
Figure 24. “-O2/O3” Optimizations Applied to SP on Jetson TX1, D&O = 20 
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Figure 25. “-O2/O3” Optimizations Applied to SP on Jetson TX2, D&O = 20 

 

Table 12. “-O2/O3” Optimizations Applied to SP on Jetson TX1/TX2, D&O = 20 

Compiler Flag Mean 

Runtime on 

TX1 (s) 

Speedup 

on TX1 

(%) 

Mean 

Runtime on 

TX2 (s) 

Speedup 

on TX2 

(%) 

-O2 13.70 -- 11.48 -- 

-finline-functions  13.60 0.70 11.38 0.82 

-funswitch-loops  13.61 0.64 11.42 0.48 

-fpredictive-commoning 13.18 3.79 11.06 3.69 

-fgcse-after-reload  13.67 0.25 11.45 0.25 

-ftree-loop-vectorize 13.58 0.88 11.44 0.35 

-ftree-loop-distribution  13.70 0.05 11.48 -0.01 
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-ftree-loop-distribute-

patterns  

18.61 -35.87 15.63 -36.12 

-floop-interchange  13.60 0.76 11.48 -0.01 

-ftree-slp-vectorize 13.69 0.09 11.36 1.00 

-fvect-cost-model  13.68 0.12 11.47 0.04 

-ftree-partial-pre  13.58 0.88 11.55 -0.61 

-fpeel-loops  13.35 2.55 11.08 3.51 

-fipa-cp-clone 13.67 0.24 11.48 0.00 

-O2 + Green 12.74 7.00 10.61 7.55 

 

 

 For both Jetsons, the compiler flag “-free-loop-distribute-patterns” negatively 

affected the runtime of SP. Contrarily, the “-fpredictive-commoning” and “-fpeel-loops” 

flags positively affected performance on both computers. On the Jetson TX2, the “-ftree-

slp-vectorize” optimization reduced the runtime of SP by just over 1%. None of the other 

compiler flags had any significant effect on either machine.  

On the Jetson TX1, the “-fpredictive-commoning” and “-fpeel-loops” 

optimizations were combined with the “-O2” flag to form the “-O2 + Green” simulation 

shown in Figure 24, which reduced the runtime by 7% compared to the “-O2”-optimized 

version. On the TX2, the “-ftree-slp-vectorize” optimization was included in the “-O2 + 

Green” simulation. This reduced the runtime by 7.55% compared to the “-O2”-optimized 

version. These combinations of compiler optimizations formed the most efficient 

implementations of SP on each machine.  
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4.2.2 Testing the First Hypothesis 

 Once the optimal combination of compiler flags was applied, the first hypothesis 

could be tested to determine if the runtimes of the optimized serial version were less than 

those of the initial serial version. Figure 26 shows the resulting runtimes of the optimized 

serial version compared to the initial serial version for degrees and orders 10-50. At degree 

and order of 10, the optimized serial version converged in approximately five seconds on 

both machines, compared to the initial serial version which converged in 22-26 seconds. 

At degree and order of 50, the optimized serial version converged in 48-57 seconds, a full 

200 seconds faster than the initial serial version. 

 
Figure 26. Initial Serial Version vs. Optimized Serial Version of SP 

 



www.manaraa.com

85 

 These results showed that the optimized serial version significantly outpaced the 

initial serial version for all degrees and orders tested. The combination of compiler 

optimizations used reduced the runtime of the initial serial version by an average of almost 

80%. Thus, the evidence produced by these tests strongly supported the first hypothesis.  

4.3 Applying APOD to Special Perturbations 

This section analyzes the results of optimizing and deploying the parallel 

geopotential. The runtime of the parallel geopotential model was measured after the initial 

parallelization step was completed and measured again after each subsequent optimization 

step to ensure the optimization technique was beneficial. Because a large portion of the 

geopotential was still calculated on the Host, the compiler optimizations described in 

Section 4.2 were applied. Once all major optimization strategies were exhausted, the 

parallel geopotential model was integrated into the SP codebase and ran to ensure it 

converged to the correct solution. 

4.3.1 Runtime Analysis of Optimizing the Parallel Geopotential Model  

Once the results of initial parallel geopotential were verified for correctness, its 

runtime was measured before entering the optimization step. The mean runtime of the 

parallel geopotential was remeasured after each iteration of optimization to determine the 

performance gains of each optimization strategy. Figure 27 shows the mean runtime of the 

initial parallel geopotential model and the mean runtime after each iteration of the 

optimization step compared to the runtime of the serial version, all at degree and order of 

50:  
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Figure 27. Runtime of Parallel Geopotential through Optimization Steps, D&O = 50 

 As described in Section 3.3.3.1, the first optimization technique applied to the 

parallel geopotential model was to minimize the impact of transferring data between the 

CPU and GPU. This optimization reduced the runtime of the parallel geopotential by more 

than 81%. The second optimization applied was to maximize the occupancy of the GPU. 

Although this only reduced the runtime by 6% over the previous version, it was essential 

to apply since the benefit of maximizing occupancy grows with the number of threads 

being run on the GPU. The third optimization strategy was to implement the reduction 

operation presented in Section 3.3.3.3. The initial implementation of the reduction 

operation used a for loop; however, the reduction operation was further optimized by 

unrolling the for loop. This reduced the runtime by 10% compared to the previous 

version. The next optimization strategy applied was to reduce thread divergence within the 

kernel. This reduced the runtime of the previous version by over 21%. The final 

optimization strategy was to implement instruction-level optimizations for all modulo 
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operations in the kernel. The benefit of this optimization was very small, which indicated 

the kernel was as optimized as possible in its current form. These five optimization 

strategies resulted in an overall runtime reduction of almost 88% over the initial parallel 

geopotential model. These results are presented in Table 13: 

Table 13. Improvement of Parallel Geopotential through Optimization Steps,  

D&O = 50 

Iteration Description Mean Runtime (ms) % Improved 

0 Initial Parallel Geopotential Model 1.1370 -- 

1 Minimized Impact of Data Transfers 0.2100 81.53 

2 Maximized Occupancy 0.1977 5.87 

3 Implemented Reduction Operation 0.1776 10.15 

4 Minimized Thread Divergence 0.1395 21.43 

5 Instruction Optimization 0.1391 0.30 

Total Runtime Improvement (%): 87.76 

 

4.3.2 Verifying the Parallel Version of Special Perturbations 

 Once the parallel geopotential was optimized, it was integrated into the SP codebase 

and ran to ensure it converged to the correct solution. Table 14 contains the comparison of 

the truth data with the final state vector produced by SP using the parallel geopotential 

model. It shows that the position component of the state vector produced using the parallel 

geopotential model matches the truth data to the eighth decimal place. The velocity 

component matches the truth data to the eleventh decimal place, and the air drag 

coefficients match to the twelfth decimal place.  
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Table 14. Accuracy of State Vector Produced Using the Parallel Geopotential Model 

 Difference Percentage 

Position X: -3.57977114617825e-9 99.9999999999036 

Position Y: 2.25008989218622e-9 100.000000000038 

Position Z: -2.39030001347729e-9 99.9999988964074 

Velocity X: -2.87947443666781e-12 100.000000000051 

Velocity Y: -4.38982183936787e-12 99.9999999998767 

Velocity Z: 1.02140518265514e-14 99.9999999999997 

B* (Air Drag):  -9.99599700091786e-13 100.000008283640 

 

4.3.3 Testing the Second Hypothesis 

 Once the parallel geopotential model was deployed into the SP codebase, the 

second hypothesis could be tested to determine if parallelizing the geopotential model 

would decrease the runtimes of the initial serial version of SP for any degree and order less 

than or equal to 50. Figure 28 shows the runtimes of the parallel version and the initial 

serial version using degrees and orders 10-50 on both Jetsons. At degree and order of 10, 

the initial serial versions converged in 22-26 seconds while the parallel versions took 

between 65-80 seconds. However, the parallel versions broke even with the initial serial 

versions at degree and order of 26 on the TX1 and 28 on the TX2. By degree and order of 

50, the parallel version resulted in an average runtime reduction of 54 − 56% over the 

initial serial version. 
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Figure 28. Initial Serial Version vs. Parallel Version of SP 

The runtimes of the parallel version on the Jetson TX1 increase in increments 

instead of a steady incline like those on the TX2. The degrees and orders at which the 

runtimes on the TX1 increase correlate to the number of thread blocks being launched. 

When degree and order was set to 30, three thread blocks of 256 threads each were 

launched on the GPU. At degree and order of 35, four thread blocks were launched.  

At degree and order of 10, the initial serial version was faster on both machines. 

However, the parallel version outpaced the initial serial versions for any degree and order 

greater than 26 on the TX1 and 28 on the TX2. Since the parallel version was faster than 

the initial serial version for degrees and orders less than 50, the results of this test strongly 

supported the second hypothesis.  
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4.4 Determining the Most Efficient Implementation  

 After the optimized serial version and the parallel version were implemented, the 

runtimes of the two versions were compared to the initial serial version of SP. The results 

of these tests concluded the best way to implement SP on both the Jetson TX1 and TX2 

was the optimized serial version. This section presents these results and the accompanying 

analysis.  

4.4.1 Special Perturbations on the Jetson TX1 

 Despite the parallel version being faster than the initial serial version for any degree 

and order higher than 26 on the TX1, the optimized serial version was the fastest overall. 

Figure 29 shows the comparison of the runtimes of the three versions of SP on the Jetson 

TX1. For all degrees and orders tested, the optimized serial version significantly outpaced 

the parallel version. The runtimes of the parallel version grew at a slower rate than those 

of the optimized serial version, meaning the parallel version would likely outpace the 

optimized serial version at higher degrees and orders. However, since the implementation 

of SP being used only uses degree and order of 50 or less, the optimized serial version 

remains the most efficient implementation.  
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Figure 29. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1 

 These results are also presented in Table 15 for each degree and order tested. The 

percentage of speedup of the optimized serial and parallel versions is in relation to the 

initial serial version. At degree and order of 50, the optimized serial version is over 

80% faster than the initial serial version, while the parallel version is only 54% faster, 

making the optimized serial version the most efficient way to implement SP on the Jetson 

TX1. 
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Table 15. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1 

D&O of 

Geopotential 

Initial 

Serial 

Version (s) 

Optimized 

Serial 

Version (s)  

Optimized 

Serial Speedup  

(%) 

Parallel 

Version 

(s) 

Parallel 

Speedup  

(%) 

10 25.76 5.80 77.50 62.37 -142.11 

15 40.92 8.77 78.56 73.07 -78.57 

20 61.32 12.76 79.18 85.19 -38.93 

25 87.00 17.74 79.61 88.45 -1.67 

30 117.81 23.72 79.87 92.03 21.88 

35 153.95 30.64 80.09 124.15 19.36 

40 195.86 38.61 80.29 127.75 34.77 

45 242.54 47.45 80.43 129.84 46.47 

50 294.36 57.11 80.60 134.19 54.41 

 

4.4.2 Special Perturbations on the Jetson TX2 

 As on the Jetson TX1, the optimized serial version was the most efficient way to 

implement SP on the TX2. The parallel version broke even with the initial serial version at 

degree and order of 28. However, the runtimes of the optimized serial version were much 

faster, as seen in Figure 30: 
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Figure 30. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2 

 At degree and order of 50, the optimized serial version is 81% faster than the initial 

serial version. The parallel version is only 56% faster at this degree and order. Thus, the 

optimized serial version was the most efficient way to implement SP on the Jetson TX2. 

This data is shown in Table 16: 
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Table 16. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2 

D&O of 

Geopotential 

Initial 

Serial 

Version (s) 

Optimized 

Serial 

Version (s)  

Optimized 

Serial Speedup  

(%) 

Parallel 

Version (s) 

Parallel 

Speedup  

(%) 

10 21.93 4.75 78.33 85.94 -291.92 

15 35.00 7.28 79.19 87.21 -149.17 

20 52.48 10.62 79.76 90.34 -72.15 

25 74.39 14.80 80.11 92.72 -24.65 

30 100.98 19.80 80.39 95.49 5.44 

35 131.92 25.66 80.55 98.17 25.59 

40 167.52 32.30 80.72 102.81 38.62 

45 207.58 39.74 80.85 106.71 48.59 

50 251.97 47.87 81.00 111.50 55.75 

 

 

4.4.3 Special Perturbations on the Jetson TX1 vs. the Jetson TX2 

 The extent to which SP performs better on the Jetson TX2 compared to the TX1 

was also recorded for this research. The runtimes of SP on each machine used in Sections 

4.4.1 and 4.4.2 were compared to determine how much faster the Jetson TX2’s CPU and 

GPU performed compared to the TX1’s. Figure 31 compares the runtimes of the optimized 

serial version on the TX2 and TX1.   
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Figure 31. Optimized Serial Version of SP on Jetson TX1 vs. TX2 

Table 17 compares the performance of the optimized serial version on each of the 

Jetsons’ CPUs. At degree and order of 50, the Jetson TX2 outpaced the TX1 by just under 

10 seconds. This equates to a speedup of 16%.  

Table 17. Optimized Serial Version of SP on Jetson TX1 vs. TX2 

D&O of 

Geopotential 

Optimized Serial 

Version on TX1 

Optimized Serial 

Version on TX2 

Speedup of TX2 

(%) 

10 5.80 4.75 18.02 

15 8.77 7.28 16.97 

20 12.76 10.62 16.78 

25 17.74 14.80 16.59 

30 23.72 19.80 16.51 
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35 30.64 25.66 16.27 

40 38.61 32.30 16.35 

45 47.45 39.74 16.25 

50 57.11 47.87 16.19 

 

 

 Next, the runtimes of the parallel versions on each machine were compared. Figure 

32 and Table 18 below show the performance of the parallel version of SP on the Jetson 

TX2 compared to the TX1. At degree and order of 50, the Jetson TX2 converged almost 

17% faster than the TX1.  

 
Figure 32. Parallel Version of SP on Jetson TX1 vs. TX2 
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Table 18. Parallel Version of SP on Jetson TX1 vs. TX2 

D&O of 

Geopotential 

Parallel Version on 

TX1 

Parallel Version on 

TX2 

Speedup of TX2 

(%) 

10 62.37 85.94 -37.80 

15 73.07 87.21 -19.35 

20 85.19 90.34 -6.04 

25 88.45 92.72 -4.82 

30 92.03 95.49 -3.76 

35 124.15 98.17 20.93 

40 127.75 102.81 19.52 

45 129.84 106.71 17.81 

50 134.19 111.50 16.91 
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5.  Conclusions and Recommendations 

This section presents the conclusions associated with this research. The results of 

two hypotheses are summarized and the significance of this research is discussed. 

Recommendations for future work are also presented.  

5.1 Research Summary and Conclusions 

 The ultimate goal of the research conducted in this thesis was to determine the most 

efficient way to implement SP on the Jetson TX1 and TX2. Before that determination could 

be made, the implementation of SP developed for a Windows machine had to be ported 

over to the Linux operating system used by the Jetson TX series of computers and the two 

hypotheses had to be tested. The results of the first hypothesis determined the optimal 

combination of compiler flags to apply to SP that would reduce SP’s runtime. The results 

of the second hypothesis showed that the Jetsons’ GPUs could be used to reduce the 

runtime of SP. The results of the two hypotheses were then used to determine the most 

efficient way to implement SP on the Jetson TX1 and TX2.  

 Before the two hypotheses could be tested, the SP software had to be reconfigured 

to run on the Jetson TX1 and TX2. Through reorganizing the package diagrams, the SP 

codebase was able to be implemented on the Jetsons such that it converged to the same 

solution as the original Windows version.  

 Once the SP software was reconfigured to run on the Jetson TX1/TX2, the first 

hypothesis was able to be tested. The study conducted by CERN openlab provided a guide 

to which compiler flags should be included. Although the majority of the compiler 

optimizations suggested by the study had negligible affects, the “-O2” and “-O3” compiler 
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flags significantly reduced the runtime of SP. Since the benefit of using the “-O3” compiler 

flag was less than that of using the “-O2” compiler flag, an additional test was conducted 

for both the Jetson TX1 and TX2 to determine if certain individual compiler optimizations 

included in the “-O3” compiler flag would reduce the runtimes further. The “-fpredictive-

commoning” and “-fpeel-loops” compiler optimizations, when combined with “-O2” 

compiler flag, resulted in the fastest runtimes on the Jetson TX1. On the TX2, the “-ftree-

slp-vectorize” compiler flag was added to the combination of compiler flags to produce the 

optimal solution. The runtimes of the optimized serial versions were significantly less than 

the initial serial version, which strongly supported the first hypothesis.  

 The APOD software development cycle was then applied to the initial serial version 

of SP to test the second hypothesis of determining whether parallel computing using the 

Jetsons’ GPUs could reduce the runtimes of SP. The ‘Assess’ step of the APOD cycle 

revealed that the majority of SP’s runtime was calculating the geopotential. For this reason, 

the ‘Parallel’ step focused on this portion of the code. An initial parallel version of Pines 

Method for computing the geopotential was developed and verified. The ‘Optimize’ step 

of APOD was then applied to the initial parallel version. The parallel geopotential model 

underwent five optimization iterations, resulting in an 88% reduction in runtime compared 

to the initial parallel version.  Once all major optimization strategies were applied, the 

parallel geopotential model was deployed into the SP codebase and verified to confirm it 

converged to the correct solution. The version of SP using the parallel geopotential was 

faster than the initial serial version at any degree and order higher than 26 on the Jetson 

TX1 and 28 on the TX2, which strongly supported the second hypothesis.  
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 The results of these hypotheses were used to determine the most efficient way to 

implement SP on the Jetson TX1 and TX2. The optimized serial version and the parallel 

version of SP were compared to the initial serial version to determine which resulted in the 

fastest runtimes. Although the parallel version was faster than the initial serial version at 

higher orders of the geopotential, the optimized serial version resulted in the fastest 

runtimes by far. Therefore, the optimized serial version is the best version to use when 

implementing SP on the Jetson TX1 and TX2.  

5.2 Research Significance  

 The results of the research conducted in this thesis have shown that SP has become 

a viable option for performing OD onboard a spacecraft. When implemented on the Jetson 

TX series of computers, SP can converge in as little as 5 seconds when degree and order 

of 10 is used for the geopotential. When degree and order of 50 is used, SP can converge 

in 47 seconds. This is significantly faster than the original Windows version on the SBC. 

This will allow the SOS payload to achieve much higher accuracy than that produced by 

using SGP4.  

 Knowing the precise location of a spacecraft at future epochs is paramount in 

avoiding conjunctions. This is especially important due to the increasing congestion of the 

space domain. Higher accuracy OD performed onboard the spacecraft via SP will enable 

SSA assets to maintain tight control over where spacecraft are located and reduce the 

likelihood of an unintended conjunction.  
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5.3 Recommendations for Future Work 

 The research presented in this thesis could be furthered in two primary ways. First 

and foremost, additional test cases could be developed and applied to SP on the Jetson 

TX1/TX2. Secondly, a different approach to parallelizing SP could be investigated to 

determine if the runtime could be further reduced.  

 One of the limitations accepted for this research was the use of a single test case. 

Although this test case was sufficient for preliminary experimentation, more rigorous 

testing is required to ensure the software would operate properly under all possible 

operating conditions. Once additional test cases are developed, the Systems Tool Kit (STK) 

could be used to simulate the spacecraft in a real-world environment. This experimentation 

should be completed before SP is integrated into the SOS payload.  

  The second recommendation for future work is to investigate a different approach 

to using parallel processing to run SP. SP uses numerical integration to estimate a 

spacecraft’s position and velocity over small, consecutive integrals. Since these integrals 

are consecutive, calculating them in parallel cannot be accomplished in a straightforward 

way. However, there is a method for doing this that involves doing a first ‘rough’ pass with 

large intervals. This initial rough pass is shown in Figure 33: 
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Figure 33. SP Using Large Intervals 

A second pass of SP can then be applied that divides intervals A-D into smaller 

intervals, and computes them in parallel. This is shown in Figure 34: 

 
Figure 34. SP Performed on Large Intervals in Parallel 

This approach is closer to typical multithreaded application instead of a massively 

parallel GPU application, meaning that the Jetson TX1/TX2’s multi-core CPUs would 

likely be more applicable than the 256-core GPUs. However, this approach has the 

potential to further reduce the runtimes of SP running on the Jetson TX1 and TX2.  
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Appendix 

Compute Capability Specifications 

Technical Specification 5.3 6.2 

Maximum number of resident grids per device 16 16 

Maximum dimensionality of grid of thread blocks 3 3 

Maximum x-dimension of a grid of thread blocks 231 - 1 231 - 1 

Maximum y- or z-dimension of a grid of thread blocks 65535 65535 

Maximum dimensionality of thread block 3 3 

Maximum x- or y-dimension of a block 1024 1024 

Maximum z-dimension of a block 64 64 

Maximum number of threads per block 1024 1024 

Maximum number of resident blocks per 

multiprocessor 

32 32 

Maximum number of resident warps per 

multiprocessor 

64 64 

Maximum number of resident threads per 

multiprocessor 

2048 2048 

Number of 32-bit registers per multiprocessor 64 K 64 K 

Maximum number of 32-bit registers per thread block 32 K 32 K 

Maximum number of 32-bit registers per thread 255 255 

Maximum amount of shared memory per 

multiprocessor 

64 KB 64 KB 
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Maximum amount of shared memory per thread block 48 KB 48 KB 

Number of shared memory banks 32 32 

Amount of local memory per thread 512 KB 512 KB 

Constant memory size 64 KB 64 KB 

Cache working set per multiprocessor for constant 

memory 

8 KB 8 KB 

Maximum number of instructions per kernel  512 M 512 M 

(Table derived from NVIDIA (B), 2017) 
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