
www.manaraa.com

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Special Perturbations on the Jetson TX1 and TX2
Computers
Tyler M. Moore

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Power and Energy Commons, and the Theory and Algorithms Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Moore, Tyler M., "Special Perturbations on the Jetson TX1 and TX2 Computers" (2018). Theses and Dissertations. 1816.
https://scholar.afit.edu/etd/1816

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1816?utm_source=scholar.afit.edu%2Fetd%2F1816&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

www.manaraa.com

SPECIAL PERTURBATIONS ON THE JETSON TX1 AND TX2 COMPUTERS

THESIS

Tyler M. Moore, Captain, USAF

AFIT-ENG-MS-18-M-047

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

www.manaraa.com

AFIT-ENG-MS-18-M-047

SPECIAL PERTURBATIONS ON THE JETSON TX1 AND TX2 COMPUTERS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Tyler M. Moore, BS

Captain, USAF

March 2018

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manaraa.com

AFIT-ENG-MS-18-M-047

SPECIAL PERTURBATIONS ON THE JETSON TX1 AND TX2 COMPUTERS

Tyler M. Moore, BS

Captain, USAF

Committee Membership:

Col Dane F. Fuller, PhD

Chair

Dr. William E. Wiesel, PhD

Member

Dr. Douglas D. Hodson, PhD

Member

www.manaraa.com

iv

AFIT-ENG-MS-18-M-047

Abstract

Simplified General Perturbations Number 4 (SGP4) has been the traditional

algorithm for performing Orbit Determination (OD) onboard orbiting spacecraft. However,

the recent rise of high-performance computers with low Size, Weight, and Power (SWAP)

factors has provided the opportunity to use Special Perturbations (SP), a more accurate

algorithm to perform onboard OD. This research evaluates the most efficient way to

implement SP on NVIDIA’s Jetson TX series of integrated Graphical Processing Units

(GPUs). An initial serial version was implemented on the Jetson TX1 and TX2’s Central

Processing Units (CPUs). The runtimes of the initial version are the benchmark that the

runtimes of the other versions were compared against. A second version of SP was

implemented using compiler optimizations to increase the speed of the program. A third

version was developed to utilize the Jetsons’ 256-core GPU for parallel processing to

reduce the runtimes of the program. Runtimes of the different versions were then analyzed

to determine the most efficient way to implement SP on the Jetson TX series of computers.

www.manaraa.com

v

Acknowledgments

I would like to express my sincere appreciation to my thesis committee, Col Dane Fuller,

Dr. William Wiesel, and Dr. Douglas Hodson, for their guidance and support throughout

the course of this thesis effort. The insight and experience was certainly appreciated. I

would, also, like to thank my fiancé for her support and understanding throughout this

process. I would not have been able to do this without you.

 Tyler M. Moore

www.manaraa.com

vi

Table of Contents

Page

Abstract .. iv

Acknowledgments..v

Table of Contents ... vi

List of Figures .. viii

List of Tables ...x

1. Introduction ...1

1.1 Background Information ..1

1.2 Motivation ..3

1.3 Research Focus ...5

1.4 Assumptions and Limitations ...9

1.5 Thesis Overview ...11

1.6 List of Terms ..11

2. Literature Review...14

2.1 Space Object Self-Tracker Software ..14

2.2 Earth’s Gravitational Field ...17

2.3 Compiler Optimizations ...25

2.4 Parallel Computing ...30

3. Methodology ...54

3.1 Implementing Special Perturbations on the Jetson TX1 and TX254

3.2 Optimizing the Serial Version of Special Perturbations58

3.3 Applying APOD to Special Perturbations ..59

3.4 Determining the Most Efficient Implementation ...72

4. Analysis and Results ...74

4.1 Implementing Special Perturbations on the Jetson TX1 and TX274

www.manaraa.com

vii

4.2 Optimizing the Serial Version of Special Perturbations78

4.3 Applying APOD to Special Perturbations ..85

4.4 Determining the Most Efficient Implementation ...90

5. Conclusions and Recommendations ...98

5.1 Research Summary and Conclusions ...98

5.2 Research Significance ..100

5.3 Recommendations for Future Work ...101

Appendix ..103

Bibliography ..105

www.manaraa.com

viii

List of Figures

Page

Figure 1. SOS Concept of Operations... 4

Figure 2. Lower Triangular Matrix ... 7

Figure 3. Special Perturbations Algorithm ... 16

Figure 4. Original Package Diagram of the SP Software ... 17

Figure 5. Earth’s Oblateness ... 18

Figure 6. EGM96 Geoid ... 20

Figure 7. CUDA’s Thread Hierarchy.. 34

Figure 8. CUDA’s Memory Hierarchy ... 36

Figure 9. Block Diagram of the Jetson TX1 Development Kit .. 38

Figure 10. Block Diagram of the Jetson TX2 Development Kit 40

Figure 11. Flat Profile Produced by nvprof .. 42

Figure 12. Coalesced Global Memory Access .. 44

Figure 13. Concurrent Data Copy and Kernel Execution ... 47

Figure 14. CUDA Occupancy Calculator ... 51

Figure 15. Separate compilation process used to combine “.cu” and “.cpp” files 53

Figure 16. Updated Package Diagram of the SP Software ... 56

Figure 17. Representation of the Original Parallel Geopotential Model 63

Figure 18. Improved Occupancy of Parallel Geopotential Model for the Jetson TX1 67

Figure 19. Occupancy as a Function of Shared Memory .. 68

Figure 20. RMS of Position Components Converge, D&O = 20 75

Figure 21. RMS of Velocity Components Converge, D&O = 20 76

www.manaraa.com

ix

Figure 22. Air Drag Coefficients Converge, D&O = 20... 76

Figure 23. Compiler Optimizations Applied to SP on Jetson TX1, D&O = 20 79

Figure 24. “-O2/O3” Optimizations Applied to SP on Jetson TX1, D&O = 20 81

Figure 25. “-O2/O3” Optimizations Applied to SP on Jetson TX2, D&O = 20 82

Figure 26. Initial Serial Version vs. Optimized Serial Version of SP 84

Figure 27. Runtime of Parallel Geopotential through Optimization Steps, D&O = 50 86

Figure 28. Initial Serial Version vs. Parallel Version of SP ... 89

Figure 29. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1 91

Figure 30. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2 93

Figure 31. Optimized Serial Version of SP on Jetson TX1 vs. TX2 95

Figure 32. Parallel Version of SP on Jetson TX1 vs. TX2 ... 96

Figure 33. SP Using Large Intervals ... 102

Figure 34. SP Performed on Large Intervals in Parallel ... 102

www.manaraa.com

x

List of Tables

Page

Table 1. List of Terms ... 11

Table 2. List of Files that comprise the SP Software .. 15

Table 3. Compiler flags with description .. 26

Table 4. “-O3” Compiler Optimizations with Descriptions.. 29

Table 5. Initial State Vector .. 57

Table 6. Additional Input Parameters ... 57

Table 7. Flat Profile of SP Produced by nvprof .. 60

Table 8. Steps of Parallel Geopotential Model ... 62

Table 9. Converged State Vectors Produced by SP .. 77

Table 10. Accuracy of Jetson TX1/TX2 Converged State Vector 78

Table 11. Compiler Optimizations Applied to SP on Jetson TX1/TX2 80

Table 12. “-O2/O3” Optimizations Applied to SP on Jetson TX1/TX2, D&O = 20 82

Table 13. Improvement of Parallel Geopotential through Optimization Steps, 87

Table 14. Accuracy of State Vector Produced Using the Parallel Geopotential Model ... 88

Table 15. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1 92

Table 16. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2 94

Table 17. Optimized Serial Version of SP on Jetson TX1 vs. TX2.................................. 95

Table 18. Parallel Version of SP on Jetson TX1 vs. TX2... 97

www.manaraa.com

1

SPECIAL PERTURBATIONS ON THE JETSON TX1 AND TX2 COMPUTERS

1. Introduction

This chapter introduces this research and discusses the motivation for

accomplishing it. The assumptions made and limitations that exist are then presented and

discussed. A brief overview of the entire thesis is also contained in this section.

1.1 Background Information

 The space domain is becoming increasingly congested as additional countries

launch satellites into orbit (Colliot et al., 2012). Therefore, maintaining Space Situational

Awareness (SSA) is imperative in ensuring U.S. space assets remain operational. SSA is

loosely defined as enabling the description of the location and function of all resident space

objects (RSOs) (McCall et al., 2014); thus, determining the position of a space object is an

absolute necessity. This is accomplished through a process known as Orbit Determination

(OD).

 OD is the practice of determining the two primary components of an orbiting

object’s state vector, position and velocity, at a specific moment in time (Wiesel, 2003).

This is accomplished by using an initial guess of the state vector to determine a preliminary

orbit. This preliminary orbit does not take into account any external forces, or

perturbations, such as variations in the potential of Earth’s gravity field or atmospheric

drag that are measured through ground- or space-based observations. Hence, a set of

www.manaraa.com

2

equations of motion can be encapsulated in a dynamics model to more accurately represent

the object’s physical environment (Vetter, 2007). The orbit is then propagated forward in

time to estimate the state vector at a future epoch. This can be accomplished analytically

through a general perturbations method such as Simplified General Perturbations Number

4 (SGP4) or numerically through a Special Perturbations (SP) method (Vetter, 2007).

Computers first started being used to perform OD in the mid-twentieth century. At

this time, their computational power was insufficient for producing precise orbit

propagations. Thus, less computationally-intensive methods were required to perform OD

on near-Earth space objects. General perturbation techniques such as SGP4, which assume

that there are only small deviations from the two-body problem, were developed to meet

this need (Wiesel, 2003).

While ground-based radar and optical sensors continue to be the primary pillars of

SSA, they are limited by weather, solar blindspots, and their geography (Baird, 2013).

Performing OD onboard the spacecraft can mitigate these limitations. Due to the Size,

Weight, and Power (SWAP) constraints of space vehicles (SVs), SGP4 has been a natural

fit for onboard OD. Its light-weight design can be implemented on small, energy-efficient

computers.

However, SGP4 has its drawbacks; namely, it sacrifices precision for

computational efficiency in order to provide a light-weight approach to OD for near-Earth

space objects. Due to this trade-off, the accuracy of SGP4 is typically on the order of one

kilometer (Vallado et al., 2006). This fact, paired with the increased capability of modern

computing, has recently caused the use of SGP4 for SSA tasks to be called into question

(Oltrogge et al., 2014).

www.manaraa.com

3

The SP model, on the other hand, is a more accurate OD method that uses numerical

integration to calculate ephemerides for Earth-centered space objects (Air Force Space

Command (AFSPC), 2012). This method was first utilized by Cowell and Crommelin in

the mid-nineteenth century when they numerically integrated the equations of motion for

Halley’s Comet to predict its 1910 passing of Earth to within three days (Crommelin,

1911). This method, paired with modern computing resources, can be used to more

precisely determine an Earth-centered satellite’s position (Pelaez et al., 2007).

Because SP integrates over definite integrals, perturbing forces must be calculated

at each step, with the most expensive perturbing force to compute being the geopotential.

This makes SP extremely computationally expensive. Historically, computers powerful

enough to implement SP have been too large to use onboard a spacecraft. However, as

Moore’s Law has predicted, computing resources have become increasingly powerful

while decreasing their SWAP factors (Moore, 1965). Thus, implementing SP has finally

become a viable option for onboard OD.

1.2 Motivation

The Space Object Self-Tracker (SOS) is an experimental payload developed by the

Air Force Research Laboratory (AFRL) and the Air Force Institute of Technology (AFIT)

as part of the Payload Alert Communications System (PACS) (Bastow, 2013). The

objective of PACS is to reduce uncertainty when calculating the positions of space objects.

This improves the accuracy of collision avoidance analyses performed by the Joint Space

Operations Center’s (JSpOC). SOS was designed to be a low SWAP solution to precisely

tracking an SV through onboard OD (Perry, 2014).

www.manaraa.com

4

Figure 1 depicts the SOS concept of operations under normal operating conditions.

The payload collects GPS position and velocity data every 10 minutes. Every 24 hours, the

Single Board Computer (SBC) performs OD to estimate and propagate the orbit of the SV.

Once OD is complete, the SBC sends the orbit parameters and associated telemetry to Air

Force space operations units on the ground via the Iridium network (Perry, 2014).

Figure 1. SOS Concept of Operations (CSRA, 2014)

An implementation of SP has been developed for SOS by Wiesel (2015) and tested

by Flamos (2016), producing sub-meter level accuracy (Flamos, 2016). However, the low

throughput of SOS’s single-core SBC, which has a maximum clock speed of 200 MHz

(Technologic, 2010), is insufficient in running SP in a timely manner. For this reason, SOS

currently uses the SGP4 model. The SBC is powerful enough to run this SGP4 model;

however, it produces an error that grows at a rate of 2 kilometers per day (Flamos, 2016).

www.manaraa.com

5

Because of the limitations of the SBC, more powerful computers with small SWAP

parameters were investigated to determine a replacement. The Jetson TX1 and TX2

integrated Graphical Processing Units (GPUs) were chosen as potential candidates. The

Jetson TX1 has a quad-core CPU, with each individual processor on the CPU having a

clock speed of 1.73 GHz (NVIDIA, 2016). The Jetson TX2 has a six-core CPU, with each

core having a clock speed of 2.0 GHz (NVIDIA (A), 2017). Both Jetsons have 256-core

GPUs that can be used to compute tasks in parallel. The computing power of these

computers presents an opportunity to replace the SGP4 OD algorithm used by SOS with

SP, which would reduce the error from the order of a kilometer to below a meter.

1.3 Research Focus

The ultimate goal of the research presented in this thesis was to determine an

efficient way, in terms of runtime, to implement SP on the Jetson TX series of computers.

Two primary approaches to optimizing SP were taken. The first approach taken was to use

compiler flags to optimize the SP code running in serial on the Jetsons’ CPUs. The second

was to develop a parallel geopotential model that could utilize the Jetsons’ GPUs. The

runtimes from these two approaches were analyzed and compared to determine which is

the most efficient in implementing SP on the Jetson TX1 and TX2.

The success of this research faced three primary challenges. First, the SP software

developed for SOS was designed to run on the Windows operating system. The Jetson TX1

and TX2, however, run the Linux operating system and initial attempts to compile the SP

application on the Jetson TX1/TX2 proved unsuccessful. Thus, the SP software had to be

ported to run on a Linux machine.

www.manaraa.com

6

Second, it was unknown which compiler flags, if any, would best optimize the serial

code. Because there are several hundred compiler flags from which to choose, a guide had

to be used to determine which compiler flags were most likely to benefit the application.

Once the list of compiler flags was reduced, tests had to be run to determine which

combination of compiler flags produced the fastest executable.

Third, the feasibility of using parallel computing to increase the speed of the SP

model was uncertain. The SOS codebase uses the Pines Method (Pines, 1973) for

computing the geopotential. This is the most time-consuming component of the code;

hence, it was the most likely to benefit from parallel computing. However, the Pines

Method depends on recursion to calculate several of the primary variables it uses to

compute the geopotential (Pines, 1973). This makes a large portion of it inherently serial,

meaning that it was not particularly amenable to parallelization.

Furthermore, it was unknown at what point, if any, computing the geopotential in

parallel would reduce its runtime when compared to the initial serial version. The SP

software uses the Earth Gravity Model 1996 (EGM96) as input for the geopotential routine.

This model consists of two lower triangular matrices of harmonic coefficients, 𝐶 and 𝑆, of

degree and order 360 (Lemoine, 2005). Depending on the accuracy requirements, the

granularity of the model can be scaled up or down by varying the degree and order of the

model. Because 𝐶 and 𝑆 are lower triangular matrices, the number of elements included in

the model is equal to the summation from zero to the degree and order plus one:

∑ 𝑖 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(𝐷&𝑂)+1

𝑖=0

www.manaraa.com

7

That is, if degree and order of 10 𝑋 10 is desired, then both matrix 𝐶 and matrix

𝑆 will consist of 0 + 1 + 2 + 3 + ⋯ + 10 + 11 = 66 elements. If degree and order of

360 𝑋 360 is desired, matrix 𝐶 and matrix 𝑆 will consist of 0 + 1 + 2 + 3 + ⋯ + 360 +

361 = 65,341elements.

Figure 2. Lower Triangular Matrix

The number of elements included in the 𝐶 and 𝑆 matrices correlates to the number

of threads launched on the GPU. Since the benefit of using the GPU scales as a factor of

the number of threads launched, the degree and order of the geopotential directly affects

the potential benefit of using it. However, the accuracy requirements of the implementation

of SP used for this research only necessitate the use of degree and order of 50 or less.

www.manaraa.com

8

Therefore, the most number of threads that could be launched when calculating SP was the

summation from zero to 51, or 1,326.

The first task that had to be completed for this research was to update the SP

software developed on a Windows machine so that it could compile and run on the Jetsons’

Linux operating system. Once the solution produced by SP running on the Jetson TX1 and

TX2 was verified for correctness, the following two hypotheses could be tested:

1. There is a combination of compiler flags from the chosen list that will result in

reduced runtimes compared to the initial serial version of SP running on the Jetson

TX1/TX2.

2. Computing portions of the geopotential model in parallel will result in reduced

runtimes compared to the initial serial version of SP running on the Jetson

TX1/TX2.

The results from these two hypotheses were used to determine the answer to the ultimate

question being investigated in this thesis: What is the most efficient way to implement SP

on the Jetson TX1 and TX2?

 Before the two hypotheses could be tested, the existing SP software was

reconfigured to run on the Jetson TX1 and TX2. This initial serial version included no

optimizations or parallelization. Success in completing this task was achieved if the

application developed for both Jetsons converged to the same solution as the Windows

version.

To test the first hypothesis, different compiler optimizations were applied to the SP

software. The runtimes of the resulting applications were compared to the initial serial

www.manaraa.com

9

version of SP running on the Jetsons to determine if any combination of compiler

optimizations reduced the runtimes. Success was achieved if the runtimes of this optimized

serial version were less than those of the initial serial version for any degree and order less

than or equal to 50.

For the second hypothesis, the Assess, Parallelize, Optimize, and Deploy (APOD)

software development cycle was applied to the existing SP codebase. A stand-alone,

parallel version of the geopotential model was developed and underwent several

optimization steps to improve its runtime. It was then integrated into the SP codebase.

Success was achieved if the runtime of SP using the parallel geopotential model was less

than that of the initial serial version for any degree and order less than or equal to 50.

Once the two hypotheses were tested, the most efficient way to implement SP on

the Jetson TX series of computers could be determined. Both the optimized serial version

and the parallel version of SP were compared to initial serial version running on the Jetson

TX1 and TX2 to determine the most efficient implementation. The performance benefit of

running SP on the Jetson TX2 over the TX1 was also analyzed.

1.4 Assumptions and Limitations

 Several assumptions and limitations are associated with this research. Namely, the

hardware and software constraints, testing assumptions, and the use of the Pines Method

for computing the geopotential.

It was assumed that the Jetson TX1 and TX2 must be used. This meant this research

was limited by the capabilities of the Jetson TX1 and TX2, such as the amount of active

threads each can handle and the amount of on-chip storage each GPU has. Because

www.manaraa.com

10

NVIDIA’s Jetson TX1 and TX2 had to be used, it was assumed any parallel code developed

would be completed using NVIDIA’s Compute Unified Device Architecture (CUDA)

C/C++ language extension. CUDA was specifically developed for parallel computing with

NVIDIA GPUs; thus, it was assumed to be the most logical choice for implementing

parallel code on the Jetson TX1/TX2.

The testing and development accomplished in this research was completed using a

single test case. The initial state vector was given in terms of Earth-Centered Inertial (ECI)

coordinates and it used all terms of the geopotential, not just the zonal coefficients. These

and other conditions of the test case guided its path through the SP software such that it

only used certain functions. However, this test case used all the primary functions that the

payload is likely to use under normal operating conditions. Thus, it was assumed to be a

sufficient test case. This research was also limited to using runtime efficiency as the

primary measure of performance. Power consumption and other factors were considered

to be outside of the scope and were not considered when measuring performance.

Different types of geopotential models such as Mass Concentration (Mascon) and

3D interpolation have been developed in order to sidestep the problems presented by the

recursion found in the Pines Method (Russell, 2012; Arora, 2016). However, due to the

time constraints of the academic program, the scope of the research presented in this thesis

was limited to parallelizing the existing SP codebase. Therefore, it was assumed Pines

Method must be used for computing the geopotential.

www.manaraa.com

11

1.5 Thesis Overview

This thesis consists of five chapters. Chapter I provides an introduction to the topic

of the research and the background information relevant to it. Chapter II provides an in-

depth look at the relevant subject matter required to complete the research presented in this

thesis. Subjects include: the existing codebase of SOS, geopotential modeling, compiler

optimizations, CUDA, the Jetson TX1 and TX2, and the APOD design cycle. Chapter III

presents the methodology used to complete the research accomplished in this thesis. The

two hypotheses discussed in Section 1.3 guide this section. In Chapter IV, the results from

all experiments conducted to test the hypotheses are analyzed and discussed. Finally,

Chapter V summarizes the results of this research and makes recommendations for future

work.

1.6 List of Terms

Table 1. List of Terms

AFSPC Air Force Space Command

APOD Assess, Parallelize, Optimize, and Deploy

ARM Acorn RISC Machine

CERN Conseil Européen pour la Recherche Nucléaire

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

D&O Degree and Order (of the Geopotential)

DRAM Dynamic Random-Access Memory

ECI Earth-Centered Inertial

www.manaraa.com

12

EGM96 Earth Gravity Model 1996

GNU GNU’s Not Unix!

GPGPU General-Purpose GPU

GPU Graphical Processing Unit

GSFC Goddard Space Flight Center

HBM2 High-Bandwidth Memory 2

HPC High-Performance Computing

LEO Low-Earth Orbit

MJD Mean Julian Day

NGA National Geospatial-Intelligence Agency

NIMA National Imagery and Mapping Agency

NRL Naval Research Laboratory

NVCC NVidia C Compiler

OD Orbit Determination

PCI-e Peripheral Component Interconnect-express

RISC Reduced Instruction Set Computing

RMS Root-Mean-Square

RSO Resident Space Object

SGP4 Simplified General Perturbations 4

SIMT Single Instruction, Multiple Threads

SM Streaming Multiprocessor

SOS Space Object Space-Tracker

www.manaraa.com

13

SP Special Perturbations

STK Systems Tool Kit

SV Space Vehicle

SWAP Size, Weight, And Power

www.manaraa.com

14

2. Literature Review

This chapter presents a literature review of relevant background information needed

to perform the research including the SOS software, gravity modeling, and GNU’s Not

Unix! (GNU) compiler flags. NVIDIA’s parallel programming language extension,

CUDA, the Jetson TX1 and TX2 integrated GPUs, and the APOD design cycle are also

discussed in detail.

2.1 Space Object Self-Tracker Software

 The SOS program currently utilizes SGP4; however, an SP implementation has

been developed by Wiesel et al. (Flamos, 2016). It was written in C++ and compiled to run

on a Windows machine. This algorithm numerically integrates the equations of motion and

the equations of variation of a space object and propagates them to predict its state at a

future epoch. This research investigates the feasibility of replacing SGP4 with SP; hence,

only the SP algorithm is discussed in this section.

 The SP software used is comprised of the files in Table 2. The main function is

located in the SPLstSq.cpp file. SPLstSq.cpp also accomplishes Blocks 1-3 in Figure 3.

The main function calls the hamming routine in Hamming.cpp to begin the least squares

iteration. Throughout this process, the Dynamics model contained in

EarthTruth.h/EarthTruth.cpp is applied to the state vector, which uses routines in

Atmosphere.cpp and Geopotential.h/Geopotential.cpp to account for perturbing forces.

Once these perturbing forces are applied to the state vector, it is propagated forward in time

using the interp function in the Interp.cpp file. This process is repeated until the least

squares method converges.

www.manaraa.com

15

Table 2. List of Files that comprise the SP Software

 The SP program first reads in observational data and ensures it is in the correct

format (Figure 3, Blocks 1-3). It then uses the least squares method to propagate the initial

state, applying a dynamics model to account for perturbing forces (Figure 3, Blocks 4-6).

The algorithm calculates the position residuals for each observation and determines the

magnitude of error (Figure 3, Block 7-8). It then uses the error calculations to correct the

reference trajectory (Figure 3, Block 9-10) and iterates through this process until the

reference trajectory has converged.

www.manaraa.com

16

Figure 3. Special Perturbations Algorithm (Flamos, 2016)

Figure 4 below is a package diagram illustrating the relationships between these

files, namely which files include routines from other files.

www.manaraa.com

17

Figure 4. Original Package Diagram of the SP Software

 The dynamics model contained in the EarthTruth files calls the geopotential routine

thousands of times per iteration of SP. Because calculating the geopotential is very

computationally expensive, this takes up a significant amount of SP’s total runtime. The

geopotential is explained in further detail in Section 2.2.

2.2 Earth’s Gravitational Field

 Traditionally, orbital mechanics has focused on the two-body problem, concerning

two masses interacting through Newtonian point mass gravity (Wiesel, 2003). This is

because naturally occurring celestial objects with relatively large masses such as comets

and planets are typically separated by enough distance that the gravitational forces of other

𝑁-order objects are negligible. However, since the advent of manmade spacecraft, other

perturbing forces must be taken into account when considering near-Earth space objects in

Low-Earth Orbit (LEO). Because of Earth’s rotation and variations in its surface density,

the potential energy created by Earth’s gravity field, or the geopotential, varies, especially

www.manaraa.com

18

for RSOs in LEO. Objects at these altitudes also encounter atmospheric drag and space

environment effects such as solar radiation that can have an impact on their orbits over

time (Wiesel, 2003), but since this research is primarily concerned with the geopotential,

only it is discussed in further detail.

2.2.1 Accounting for Variations in the Geopotential

The magnitude of variation in the geopotential can be large at lower altitudes

(Wiesel, 2003). Earth’s rotation causes it to bulge about its equator, making it an oblate

rather than a homogeneous spheroid. This added mass about its equator increases the

geopotential in this zone. This is shown in Figure 5, where the horizontal radius is larger

than the vertical. Further deviations from a perfectly spherical gravity field are attributed

to variations in the Earth’s density; for example, the geopotential is generally stronger over

a mountain range and weaker over an ocean basin. Because of these irregularities, the

geopotential must be modelled as distribution of points in LEO instead of as a singular

point mass at Earth’s center as with higher altitude orbits (Wiesel, 2003).

Figure 5. Earth’s Oblateness (SandBox Science, 2017)

www.manaraa.com

19

 Earth’s gravitational potential at a specific point can be expressed as a distribution

of mass. Using polar coordinates, the geopotential, 𝑉, is expressed as 𝑉(𝑟, 𝛼, 𝜆), where 𝑟

is the object’s distance from Earth’s center, 𝛼 is its geocentric longitude, and 𝜆 is its

geocentric colatitude. The geopotential can be derived by expanding the following infinite

series known as the geopotential expansion:

𝑉(𝑟, 𝛼, 𝜆) =
𝜇

𝑟
⋅ {1 + ∑ (

𝑎

𝑟
)

𝑛

∑ 𝑃
𝑚
𝑛

(sin 𝛼) (𝐶
𝑚
𝑛

⋅ cos 𝑚𝜆 + 𝑆
𝑚
𝑛

⋅ sin 𝑚𝜆)

𝑛

𝑚=1

∞

𝑛=1

}

Equation 1. Geopotential Expansion (Wiesel, 2003)

where 𝜇 is the gravitational constant; 𝑎 is the Earth’s equatorial radius; 𝐶 and 𝑆 are the

spherical harmonic coefficients; and 𝑛 and 𝑚 are the degree and order, respectively. 𝑃

represents the Associated Legendre Function (ALF), which is the zonal harmonic solution

to the Legendre differential equation (Wiesel, 2003).

The spherical harmonic coefficients, or geopotential coefficients, of 𝐶 and 𝑆 are

obtained through measurements and observations to account for Earth’s oblateness and

density variations. They represent the actual shape of the gravity field; therefore, they are

the primary elements of a geopotential model (Wan Aziz et al., 1998).

2.2.2 Earth Gravitational Model 1996

 In the 1990s, the National Imagery and Mapping Agency (NIMA), now known as

the National Geospatial-Intelligence Agency (NGA), led a joint effort along with the

NASA Goddard Space Flight Center (GSFC) and The Ohio State University to develop a

high-fidelity geopotential model. This collaboration resulted in the Earth Gravitational

www.manaraa.com

20

Model 1996 (EGM96), an improved geopotential model with degree and order of 360

(Lemoine, 2005).

This project required the collection of an immense amount of surface gravity data

in order to accurately account for Earth’s oblateness and density variations. The Naval

Research Lab (NRL) conducted airborne gravity surveys over Greenland and parts of the

Artic and Antarctica, while NIMA partnered with gravity collection projects from nations

around the globe to cover land areas (Lemoine, 2005). Their efforts resulted in more than

30 million gravity points being recorded. These values were used to interpolate Earth’s

gravity field by computing point gravity anomalies using the geopotential expansion

(Lemoine et al., 1998).

Figure 6. EGM96 Geoid (Lemoine, 2005)

www.manaraa.com

21

These results were augmented by an extensive series of satellite tests. The NASA

GSFC partnered with the U.S. Navy and European space agencies to launch the GEOSAT,

TOPEX/POSIEDON, and ERS-1 missions. The direct altimetry collected by these

satellites, paired with data collected from tracking the orbits of more than 20 other

satellites, was used to verify and validate the surface collections. These efforts produced

the high-fidelity EGM96 geopotential data that attained an accuracy on the magnitude of

several milligals (Lemoine, 2005).

2.2.3 Pines Method

Because the traditional method of calculating Earth’s geopotential uses spherical

coordinates, it does not account for singularity about the Earth’s poles. Thus, Pines

introduced the uniform representation of the geopotential in which the geopotential

expansion (Equation 1) was modified to overcome this singularity (Pines, 1973). The

formulation of Pines Method is presented in this section.

The spherical coordinates, 𝑟, 𝛼, 𝜆, are represented in directional-cosine, Cartesian

coordinates as the position vector of 𝑹 = {
𝑥
𝑦
𝑧

} in which:

𝑥 = cos 𝛼 ⋅ cos 𝜆

𝑦 = cos 𝛼 ⋅ sin 𝜆

𝑧 = sin 𝛼

And the scalar vector: 𝑟 = √𝑥2 + 𝑦2 + 𝑧2

Pines then proposed a three-component unit vector �̂� = {
𝑠
𝑡
𝑢

}, where:

www.manaraa.com

22

𝑠 =
𝑥

𝑟

𝑡 =
𝑦

𝑟

𝑢 =
𝑧

𝑟

And, 𝑠2 + 𝑡2 + 𝑢2 = 1

Furthermore, the ALFs, 𝑃
𝑚
𝑛

(𝑢), were modified to become the derived Legendre

polynomials (DLFs):

𝐴
𝑚
𝑛

(𝑢) =
1

2𝑛𝑛!
⋅

𝑑𝑛+𝑚

𝑑𝑢𝑛+𝑚
⋅ (𝑢2 − 1)𝑛

The complex variable recursion relationships are defined as follows:

𝑐𝑟𝑒𝑎𝑙𝑚
= 𝑠 ⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1

− 𝑡 ⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1

𝑐𝑖𝑚𝑎𝑔𝑚
= 𝑠 ⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1

+ 𝑡 ⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1

Further recursion relationships are formed:

𝜌 =
𝑎

𝑟

𝜌0 =
𝜇

𝑟

𝜌1 = 𝜌 ⋅ 𝜌0

𝜌𝑛 = 𝜌 ⋅ 𝜌𝑛−1

Finally, the coefficient mass functions are defined as follows:

𝐷
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚

𝐸
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1

𝐹
𝑚
𝑛

= 𝑆
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−1
+ 𝐶

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−1

www.manaraa.com

23

𝐺
𝑚
𝑛

= 𝐶
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−2
+ 𝑆

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−2

𝐻
𝑚
𝑛

= 𝑆
𝑚
𝑛

⋅ 𝑐𝑟𝑒𝑎𝑙𝑚−2
+ 𝐶

𝑚
𝑛

⋅ 𝑐𝑖𝑚𝑎𝑔𝑚−2

Thus, transforming the geopotential expansion to the following:

𝑉(𝑟, 𝑠, 𝑡, 𝑢) = ∑ 𝜌𝑛 ∑ 𝐴
𝑚
𝑛

𝑛

𝑚=0

⋅ 𝐷
𝑚
𝑛

(𝑠, 𝑡)

∞

𝑛=0

The first partial coefficients of acceleration are then derived:

𝑎1 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑠
= ∑

𝜌𝑛+1

𝑎
∑ 𝐴

𝑚
𝑛

(𝑢) ⋅ 𝑚 ⋅ 𝐸
𝑚
𝑛

𝑛

𝑚=0

∞

𝑛=0

𝑎2 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑡
= ∑

𝜌𝑛+1

𝑎
∑ 𝐴

𝑚
𝑛

(𝑢) ⋅ 𝑚 ⋅ 𝐹
𝑚
𝑛

𝑛

𝑚=0

∞

𝑛=0

𝑎3 =
1

𝑟
⋅

𝛿𝑉

𝛿𝑢
= ∑

𝜌𝑛+1

𝑎
∑ 𝐴

𝑚 + 1
𝑛

(𝑢) ⋅ 𝐷
𝑚
𝑛

𝑛

𝑚=0

∞

𝑛=0

And the coefficient of �̂�:

𝑎4 =
𝛿𝑉

𝛿𝑟
− (

𝑠

𝑟

𝛿𝑉

𝛿𝑠
) − (

𝑡

𝑟

𝛿𝑉

𝛿𝑡
) − (

𝑢

𝑟

𝛿𝑉

𝛿𝑢
) = − ∑

𝜌𝑛+1

𝑎
∑ 𝐴

𝑚 + 1
𝑛 + 1

(𝑢) ⋅ 𝐷
𝑚
𝑛

𝑛

𝑚=0

∞

𝑛=0

These first partial derivatives are used to find the acceleration force vector 𝑭 as follows:

𝑭 = 𝑎1�̂� + 𝑎2𝒋̂ + 𝑎3�̂� + 𝑎4�̂�

Where �̂� = {
1
0
0

}; 𝒋̂ = {
0
1
0

}; and �̂� = {
0
0
1

}.

The second partial acceleration coefficients are derived similarly to form:

𝑎11 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚(𝑚 − 1)𝐴
𝑚
𝑛

𝐺
𝑚
𝑛

𝑛

𝑚=0

www.manaraa.com

24

𝑎12 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚(𝑚 − 1)𝐴
𝑚
𝑛

𝐻
𝑚
𝑛

𝑛

𝑚=0

𝑎13 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚 ⋅ 𝐴
𝑚 + 1

𝑛
𝐸

𝑚
𝑛

𝑛

𝑚=0

𝑎14 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 1

𝐸
𝑚
𝑛

𝑛

𝑚=0

𝑎23 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚 ⋅ 𝐴
𝑚 + 1

𝑛
𝐹

𝑚
𝑛

𝑛

𝑚=0

𝑎24 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 2

𝐷
𝑚
𝑛

𝑛

𝑚=0

𝑎33 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝑚 ⋅ 𝐴
𝑚 + 1
𝑛 + 1

𝐹
𝑚
𝑛

𝑛

𝑚=0

𝑎34 = − ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝐴
𝑚 + 2
𝑛 + 1

𝐷
𝑚
𝑛

𝑛

𝑚=0

𝑎44 = ∑
𝜌𝑛+2

𝑎2

∞

𝑛=0

∑ 𝐴
𝑚 + 2
𝑛 + 2

𝐷
𝑚
𝑛

𝑛

𝑚=0

The first and second partial coefficients are then combined to compute the gradient of 𝑭,

𝑃:

𝑃11 = 𝑎11 + 𝑠2𝑎44 +
𝑎4

𝑟
+ 2𝑠𝑎14

𝑃12 = 𝑃21 = 𝑎12 + 𝑠𝑡𝑎44 + 𝑠𝑎24 + 𝑡𝑎14

𝑃13 = 𝑃31 = 𝑎13 + 𝑠𝑢𝑎44 + 𝑠𝑎34 + 𝑢𝑎14

𝑃22 = −𝑎11 + 𝑡2𝑎44 +
𝑎4

𝑟
+ 2𝑡𝑎24

www.manaraa.com

25

𝑃23 = 𝑃32 = 𝑎23 + 𝑡𝑢𝑎44 + 𝑢𝑎24 + 𝑡𝑎34

𝑃33 = 𝑎33 + 𝑢2𝑎44 +
𝑎4

𝑟
+ 2𝑢𝑎34

(Pines, 1973)

This method removes the singularity about the Earth’s poles. It uses recursive

relationships to compute the acceleration and gradient of the geopotential, providing a

solution that is relatively easy to code. However, it does not provide a particularly

computationally efficient implementation, as it creates a considerable increase in the

number of function evaluations required (Casotto et al., 2007).

2.3 Compiler Optimizations

GNU compilers have built-in functionality to optimize the execution of binaries in

terms of speed. These compiler flags number in the hundreds, with each having the

potential to decrease the runtime of a program. Therefore, the European Organization for

Nuclear Research, or Conseil Européen pour la Recherche Nucléaire (CERN) in French,

partnered with industry to form CERN openlab to investigate which compiler flags are

most likely to improve the runtime of C++ code running on a CPU (Botezatu, 2012). This

study produced a list of 17 compiler flags that are most likely to improve the performance

of various programs by at least 1% in comparison to code compiled with the “-O2”

optimizations enabled. The resulting list, along with high-level descriptions, is presented

in Table 3:

www.manaraa.com

26

Table 3. Compiler flags with description (Botezatu, 2012)

- O3 -O2 optimizations plus more aggressive optimizations

for maximum speed like:

 Loop unrolling and instruction scheduling

 Code replication to eliminate branches

 Padding the size of power two arrays to allow

more efficient cache use

-ipo Enables interprocedural optimizations between files.

When this flag is enabled, the compiler performs inline

function expansion for calls to functions defined in

separate files.

-opt-ra-region-strategy=routine The register allocator creates a single region for each

routine.

-ip Enables additional interprocedural optimizations for

single-file compilations.

-opt-ra-region-strategy=block The register allocator partitions each routine into one

region per basic block.

-funroll-all-loops Unroll all loops even if the number of iterations is

uncertain when the loop is entered.

-nolib-inline Disables inline expansion of standard library or

intrinsic functions.

-inline-forceinline Specifies that an inline routine should be inlined

whenever the compiler can do so.

www.manaraa.com

27

-opt-class-analysis Determines whether C++ class hierarchy information

is used to analyze and resolve C++ virtual function

calls at compile time.

-opt-streaming-store-always Enables generation of streaming stores for

optimization. The compiler optimizes under the

assumption that the application is memory bound.

-ansi-alias Assumes that the program adheres to ISO C Standard

aliasing rules. This allows the compiler to optimize

more aggressively. If the code does not adhere to these

rules then it can cause the compiler to generate

incorrect code.

-opt-prefetch=4 Enables prefetch insertion optimization, with

optprefetch=4 being more aggressive.

-falign-functions A align functions on an optimal byte boundary.

-unroll-aggressive This option enables aggressive, complete unrolling for

loops with small constant trip counts.

-fno-inline-functions It is the opposite of finline-functions which is enabled

in O2 and O3.

-opt-block-factor=16 Loop-blocking factor=16. Loop blocking optimization

is part of the High Level Optimizations in Intel

compiler.

-opt-block-factor=2 Loop blocking factor = 2.

www.manaraa.com

28

The “-O” series of compiler flags contains several different optimizations, making

it particularly useful. It consists of three primary compiler flags: “-O1”, “-O2”, and “-O3”,

with each level including all optimizations of its predecessor. That is, the “-O2” flag

contains all optimizations of the “-O1” flag, and the “-O3” flag contains all optimizations

of the “-O1” and “-O2” flags (Free Software Foundation, 2017).

Passing any version of the “-O” flag to compiler enables several optimizations that

maximize the speed of the executable. The compiler will determine if a function can be

inlined. When this occurs, the compiler replaces a function call in the code with a copy of

the function itself. Loops are also optimized. The instruction and memory accessing

overhead of iterating through loops can be decreased be adding code to the body of the

loop through a process known as loop peeling, which enables the loop to iterate over larger

increments. Consider the following example. The original for loop iterates 16 times,

incrementing by one each time. The optimized version, however, iterates only four times

because it increments by four each time.

Original:

for(int i = 0; i < 16; i++)

{

X[i] = i*i;

}

Optimized:

for(int i = 0; i < 16; i+4)

{

X[i] = i*i;

X[i+1] = (i+1)*(i+1);

X[i+2] = (i+2)*(i+2);

X[i+3] = (i+3)*(i+3);

}

www.manaraa.com

29

Loops are also optimized by predictive commoning. The predictive commoning

optimization enabled by the “-O3” compiler flag tells the processor to reuse computations

calculated by the 𝑁𝑡ℎ iteration in a loop for the (𝑁 + 1)𝑠𝑡 iteration (Free Software

Foundation, 2017). All 14 optimizations included in the “-O3” compiler flag, along with

high-level descriptions, are presented in Table 4:

Table 4. “-O3” Compiler Optimizations with Descriptions (Free Software

Foundation, 2017)

-finline-functions Considers all functions for inlining.

-funswitch-loops Moves branches with loop invariant

conditions out of the loop.

-fpredictive-commoning Reuses computations (especially memory

loads and stores) performed in previous

iterations of loops.

-fgcse-after-reload Performs redundant load elimination pass

after reload.

-ftree-loop-vectorize Performs loop vectorization on trees.

-ftree-loop-distribution Improves cache performance on big loop

bodies and allows for further loop

optimizations.

-ftree-loop-distribute-patterns Performs loop distribution of patterns that

can be code generated with calls to a

library.

www.manaraa.com

30

-floop-interchange Improves cache performance on loop nest

and allows for further loop optimizations.

-fsplit-paths Improves dead code elimination and

common subexpression elimination.

-ftree-slp-vectorize Performs basic block vectorization on

trees.

-fvect-cost-model Alters the cost model used for

vectorization.

-ftree-partial-pre Makes partial redundancy elimination

more aggressive.

-fpeel-loops Peels loops for which there is enough

information that they do not roll much.

-fipa-cp-clone Performs function cloning to make

interprocedural constant propagation

stronger.

2.4 Parallel Computing

Most computer programs are designed to execute code in a serial manner. Single-

core CPUs usually employ this type of architecture. This changed, however, when the

theoretical limits of the CPU began to be reached (Frank, 2002). This caused focus to shift

away from improving CPU performance towards using many-core processors to execute

code in parallel (Asanovic et al., 2006).

www.manaraa.com

31

According to Williams (2012), there are two primary ways to employ parallel

computing. The first is task parallelism. When using this method, a single task is divided

into discrete, independent tasks that can be computed simultaneously. Task parallelism is

useful when a single data set must be operated on by 𝑁 different instructions, resulting in

𝑁 different data sets. The second method for computing in parallel is data parallelism. This

method is used when multiple pieces of data must be operated upon by a single instruction.

Most vector and array operations fall under this category. Both methods utilize a machine’s

multiple processors to decrease the overall runtime of an application (Williams, 2012).

In the early decades after its inception, the only way to perform parallel processing

was to manually code applications for concurrent execution using vendor-supplied,

nonstandard libraries or language extensions. This meant that developers would have to

invest significant time, effort, and costs into reengineering complex software applications

to utilize parallel architectures without knowing whether desired efficiencies and reduced

runtimes would be achieved. To overcome this barrier, programming languages had to be

adapted and extended to support multithreaded functionality (Hack, 1989).

2.4.1 CUDA

In 2006, NVIDIA developed a computer architecture for data parallelism called

Single Instruction, Multiple Threads (SIMT) which combined multithreading with an array

of multiprocessors (NVIDIA (B), 2017). The first system of this kind was also invented by

NVIDIA and used the G80 GPU. While the GPU was initially intended to render three-

dimensional images on a display for the gaming industry, its scalable array of processors

was a natural fit for problems that could be solved using data parallelism. Researchers

www.manaraa.com

32

began employing GPUs for more general high-performance computing (HPC) tasks,

coining the term General-Purpose GPU (GPGPU) (NVIDIA (B), 2017).

Soon after, NVIDIA released their Compute Unified Device Architecture (CUDA)

based on the SIMT paradigm. CUDA, coupled with the NVIDIA CUDA compiler (nvcc),

was the first C language extension that gained widespread traction among users wishing to

take advantage of GPUs for general purpose computing. It allowed engineers to disregard

the underlying graphical concept for which the GPU was originally intended and instead

utilize it as a true GPGPU (NVIDIA (B), 2017).

In CUDA, the CPU and GPU are known as the Host and Device, respectively.

Maintaining the logical distinction between Host and Device as two separate entities

enables CUDA to employ a heterogeneous programming model where threads are executed

on a physically separate device. This model assumes that the Host and the Device maintain

their own separate memory and that the Host directs the Device on which functions and

data to operate. In other words, the Host begins the program, configures the number of

threads to be executed, and then calls parallelized Device functions for the Device to

process (NVIDIA (B), 2017).

CUDA extends C/C++ to allow users to define functions, or kernels, that are

executed on the Device, meaning they can utilize the GPU’s array of processors. When

called, kernels can launch thousands of threads simultaneously, instead of being executed

as a single thread as in a serial implementation. Kernels can use two different declaration

specifiers, __global__ or __device__. Kernels using the global declaration specifier

are called from the Host and executed on the Device, while kernels using the device

declaration specifier are called and executed on the Device (NVIDIA (B), 2017).

www.manaraa.com

33

To manage its heterogeneous programming model, CUDA adopts three

fundamental abstractions: a hierarchy of thread groups, a hierarchy of GPU memory, and

barrier synchronization. CUDA’s thread hierarchy allows users to divide complex

problems into finer-grained sub-problems that can be managed, branched, and executed

differently depending on their place in the hierarchy. The memory hierarchy allows the

user to manage what can and cannot be accessed by code running on the GPU. CUDA also

employs barriers that ensure no single thread goes beyond a certain specified point, wherein

doing so would result in an attempt to access or manipulate data that is dependent on other

threads. These three core capabilities aide in partitioning tasks into smaller sub-problems

that can be solved cooperatively by multiple threads (NVIDIA (B), 2017).

2.4.1.1 CUDA’s Thread Hierarchy

CUDA organizes threads into a hierarchy of threads, thread blocks, and grids.

Threads are the lowest level in the hierarchy. The CUDA built-in keyword, threadIdx,

is used for indexing each thread launched on the Device. It returns a three-component

vector enabling individual threads to be identified in up to three dimensions. The next tier

is referred to as a thread block, and is a collection of multiple threads that are executed

independently. Thus, thread blocks are required to be structured such that all threads within

a given block can be executed in any order or in parallel. This requirement allows CUDA

programs to scale to the number of Streaming Multiprocessors (SMs) on a given Device.

Thread blocks are indexed using blockIdx which is also a three-component vector. The

multi-dimensional thread blocks are organized into grids, which are the highest level in the

thread hierarchy (NVIDIA (B), 2017).

www.manaraa.com

34

The total number of threads being operated upon by a kernel depends on the number

of grids, blocks, and threads launched. For instance, if a kernel is launched with number

of grids, 𝑔, number of blocks per grid, 𝑏, and number of threads per block, 𝑡, the total

number of threads, 𝑇, is given by the following expression:

𝑇 = 𝑔 × 𝑏 × 𝑡

Grids, thread blocks, and threads are illustrated in Figure 7, in which a single grid has six

blocks, with 12 threads per block, resulting in 72 total threads:

Figure 7. CUDA’s Thread Hierarchy (NVIDIA (B), 2017)

It is important to note that upon launching a kernel, the Device creates, schedules,

and executes threads in groups of 32 called warps. When an SM is given a thread block to

execute, it divides it into warps and uses its warp scheduler to schedule each one. SMs

manage threads in groups of 32 regardless of the number of threads per block; therefore, it

www.manaraa.com

35

is important to adjust block size into multiples of 32 whenever possible (NVIDIA (B),

2017). Configuring the most efficient number of grids, blocks, and threads is discussed in

further detail in Section 2.4.4.3.

2.4.1.2 CUDA’s Memory Hierarchy

Device memory is divided up into three primary tiers, with the lowest level being

local memory. Each individual thread has its own local memory. Despite what its name

implies, local memory’s default physical location resides off-chip, making it inefficient to

access. However, local variables can be moved to registers located on-chip. The number of

these 32-bit registers is of course finite, so care must be taken to not exceed the amount of

registers available. The next level of Device memory is shared memory. Each thread block

has its own shared memory space that each thread within a block can access. This allows

thread blocks to work together to perform interdependent tasks such as summations by

storing and accessing data using shared variables across all threads in a thread block.

Because multiple threads use shared memory to collaborate, it is low latency. Therefore,

shared memory resides on-chip, and should be used whenever possible. The highest level

in CUDA’s memory hierarchy is global memory. Each thread, thread block, and grid can

access the Device’s global memory. Global memory is the largest memory space, but it is

inefficient to access due to it being off-chip. In addition to the three primary types of Device

memory, there are also two read-only memory spaces called texture and constant memory

that can be used in the same way as global memory (NVIDIA (B), 2017). CUDA’s primary

memory hierarchy is shown in Figure 8:

www.manaraa.com

36

Figure 8. CUDA’s Memory Hierarchy (NVIDIA (B), 2017)

2.4.1.3 Thread Synchronization

The sharing of data by shared and global memory introduces the same

synchronization problems that arise in multi-threaded applications. Because threads

working cooperatively to solve a problem are often dependent on data produced by another

thread, certain threads can attempt to access this data before it has actually been computed.

Thus, CUDA employs a built-in function, __syncthreads(). It acts as a barrier that

no thread can go beyond until all threads within a block or grid have reached it. This barrier

synchronization is necessary for the collaborative capability of CUDA (NVIDIA (B),

2017).

www.manaraa.com

37

2.4.2 NVIDIA Jetson TX1

 Part of the research presented in this thesis investigates runtime performance gains

that can be achieved by porting existing SP and Geopotential code bases to NVIDIA’s

Jetson TX1 system-on-module. It consists of a tightly-coupled CPU and GPU on the same

board, both of which are discussed in this section.

2.4.2.1 Jetson TX1 CPU

 The Jetson TX1 module employs a quad Acorn Reduced Instruction Set Computing

(RISC) Machine (ARM) Cortex-A57 CPU that can achieve an operating frequency of 1.73

GHz. It has 80 KB of L1 cache per core, resulting in 320 KB of total L1 cache. It also has

2 MB of shared L2 cache between its four cores. The Cortex-A57 processor core utilizes a

SIMT architecture, ARMv8-A, that enables the Jetson TX1’s four CPU cores to perform

multithreaded operations (Otterness et al., 2017). Furthermore, the Jetson TX1’s L2 cache

is optimized for multithreaded applications by allowing multiple processors to access the

L2 simultaneously (NVIDIA, 2016).

2.4.2.2 Jetson TX1 GPU

The Jetson TX1’s GPU consists of two Maxwell SMs, each of which contains an

array of 128 processors, or CUDA cores. The Maxwell architecture improves NVIDIA’s

control logic partitioning, workload balancing, clock-gating granularity, compiler-based

scheduling, and number of instructions issued per clock cycle (NVIDIA, 2016). It has 4

GB of Dynamic Random-Access Memory (DRAM) that can be accessed at 25.6 GB/s. The

Maxwell architecture also devotes a full 64 KB of L1 cache per SM to shared memory,

decreasing the time cost in algorithms that depend on sharing variables across thread

www.manaraa.com

38

blocks. Both Maxwell SMs on the Jetson TX1 have a clock speed of 998 MHz. Moreover,

the Maxwell architecture features 3,072 KB of L2 cache which is larger than previous

designs and results in fewer high-cost accesses of global memory (NVIDIA, 2016).

GPUs are typically divided into two categories: discrete or integrated. A discrete

GPU is a stand-alone device that must be manually connected to a CPU in order for it to

be utilized for parallel computing. The Jetson TX1 falls into the integrated category, where

the CPU and GPU are built onto a single board and share DRAM. The Jetson TX1’s 4GB

of shared DRAM give it a wider range of mechanisms to transfer data to and from the

Device (Otterness et al., 2017).

Figure 9. Block Diagram of the Jetson TX1 Development Kit (NVIDIA, 2016)

The Jetson TX1 has a compute capability of 5.3. This is not to be confused with the

version of CUDA that is deployed on the Jetson TX1 (i.e., CUDA 5.5, CUDA 6.0, etc.), as

www.manaraa.com

39

the compute capability of a device represents its SM version, not its CUDA version. Thus,

the compute capability specifies the capabilities supported by the GPU hardware

implementation (NVIDIA (B), 2017).

A compute capability of 5.3 tells the compiler that the Device has 128 CUDA cores

per SM and four warp schedulers at its disposal. When a kernel is launched, the SM

distributes all warps between the four schedulers. Every time an instruction is issued, each

individual scheduler issues the instruction to the next warp in the queue (NVIDIA (B),

2017).

A device’s compute capability also dictates how kernels can be configured and

executed. Devices of compute capability 5.3 can have a maximum of 16 grids present on

the Device. It allows for up to 1024 threads per thread block, and up to 2048 threads on a

single SM at a time. A complete list of technical specifications for compute capability 5.3

can be found in Appendix A.

2.4.3 NVIDIA Jetson TX2

 The software being evaluated for this thesis will also be deployed on the Jetson

TX2. It is the newest release of the Jetson TX series. The following sections highlight the

primary differences between the Jetson TX1 and TX2.

2.4.3.1 Jetson TX2 CPU

 The CPU on the Jetson TX2 consists of six cores. Four of the six cores are the same

as the Jetson TX1 CPU cluster, and the remaining two cores are the Denver 2 dual-core

CPU cluster. The Denver 2 cluster is optimized for single-thread performance. The Denver

2 cores are also linked together via high-performance coherent interconnect fabric that

www.manaraa.com

40

allows for seamless multiprocessing. All six of these cores have a clock speed of 2.0 GHz

(NVIDIA (A), 2017).

2.4.3.2 Jetson TX2 GPU

The Jetson TX2’s integrated GPU consists of two Pascal SMs, each consisting of

128 CUDA cores. The Pascal SM architecture employed by the TX2 improves upon the

Maxwell architecture. Each CUDA core on the Jetson TX2’s GPU operates at a frequency

of 1.3 GHz. The TX2 also increases the amount of DRAM from 4 GB to 8 GB and more

than doubles the memory bandwidth from 25.6 GB/s to 59.7 GB/s as compared to the TX1.

The size of the L2 cache was increased to 4096 KB. Each Pascal SM comes equipped with

32 CUDA cores specifically designed for double-precision computing. The Jetson TX2’s

GPU has a compute capability of 6.2. A complete list of technical specifications for

compute capability 6.2 can be found in Appendix A.

Figure 10. Block Diagram of the Jetson TX2 Development Kit (NVIDIA (A), 2017)

www.manaraa.com

41

2.4.4 APOD Design Cycle

 Even though CUDA was designed to be intuitive to C/C++ programmers,

parallelizing existing software applications can still be a challenging task requiring

developers to front significant development efforts with little guarantee of return on

investment. Therefore, NVIDA introduced an iterative software development cycle to

guide programmers in efficient development of parallel applications. The Assess,

Parallelize, Optimize, Deploy (APOD) design cycle enables developers to identify aspects

of their code that could see performance gains from GPU acceleration, realize those gains,

and begin deploying the GPU-accelerated software into operational systems as early as

possible (NVIDIA (C), 2017).

2.4.4.1 Assess

The first step in reengineering an existing software application to benefit from

parallel computing is to determine which portions of code are most time-intensive

(NVIDIA (C), 2017). Developers should create profiles to identify bottlenecks, or hotspots,

in the program that can be analyzed to determine their suitability to be parallelized. This

step in the design cycle prevents developers from investing time parallelizing portions of

code that would likely have minimal impact on the overall performance of the application

(NVIDIA (C), 2017).

An application profile details the functions where a program spends its time. This

allows the developer to identify which routines are most time consuming, which guides the

developer in determining which aspects of a program are good candidates for

parallelization (NVIDIA (C), 2017).

www.manaraa.com

42

NVIDIA’s profiling tool, nvprof, was used to support this research. nvprof is

NVIDIA’s version of gprof and can produce several different application profiles, with

the flat profile being the most applicable. The flat profile lists a program’s total execution

time by function. An example flat program is presented in Figure 11:

Figure 11. Flat Profile Produced by nvprof (NVIDIA (C), 2017)

Figure 11 shows that the genTimeStep function took an average of 0.02 seconds to

execute. However, this information alone does not indicate whether this function is a

potential hotspot. Since genTimeStep was called 7,208 times, it makes up the largest

portion of time spent by the program, and is a potential candidate for parallelization

(NVIDIA (C), 2017).

2.4.4.2 Parallelize

 Once hotspots have been identified, software developers can parallelize the code

(NVIDIA (C), 2017). The objective of this step is not to produce a perfectly optimized

parallel implementation, but to investigate whether a certain hotspot has the potential for

parallelization (NVIDIA (C), 2017).

www.manaraa.com

43

 Serial code is often structured in such a way that does not expose its inherent

parallelism. Therefore, developers must restructure their routines to expose their inherent

parallelism, if any exists. For example, recursive loops can often be restructured to use a

deterministic solution, disabling dependence of previous iterations (NVIDIA (C), 2017).

 Verification must also be accomplished in this step to ensure the hotspot was

properly parallelized. Developers must verify parallel implementations yield identical

results or results within some error bound. Unexpected results often arise from floating-

point values due to how they are computed and stored; thus, identical results are often

unattainable in these instances and some small epsilon can be used depending on the

application’s accuracy requirements (NVIDIA (C), 2017).

2.4.4.3 Optimize

Poorly structured parallel programs often result in slower runtimes than serial

implementations, or fail to compile at all. Liberal usage of expensive memory transfers and

accesses, improperly partitioning tasks, or having an incorrect understanding of the

Device’s hardware architecture are often the culprits behind these instances. In order to

ensure parallel code is being implemented effectively, developers must take full advantage

of all techniques, features, and tools available at their disposal (NVIDIA (C), 2017).

Parallelized kernels may not be properly structured to take full advantage of the

GPU’s computing power. Thus, after the parallelization of a hotspot has been shown to be

feasible it must be optimized to improve performance (NVIDIA (C), 2017). Unlike the

‘Parallelize’ step, the ‘Optimize’ step, itself, is iterative. Meaning that for each portion of

newly parallelized code, the developer should attempt to optimize the code, verify for

www.manaraa.com

44

correctness, and record any performance gains. Optimizations can be as high-level as

overlapping data transfers between the Host and Device or as granular as fine-tuning

individual arithmetic operations (NVIDIA (C), 2017).

Memory Optimization

 As stated in Section 2.4.1.2, each access to global memory incurs an expensive time

cost. Hence, mitigating the cost of these accesses is often the single most important

performance consideration when optimizing a CUDA application (NVIDIA (C), 2017).

Programmers can lessen the impact of accessing data from memory by coalescing multiple

memory accesses into single transactions and by storing data in the Device’s more-efficient

shared memory (NVIDIA (B), 2017).

Coalescing groups of reads or writes of multiple data items into a single operation

distributes the memory access cost across the entire group, versus having individual cost

for each memory access. This technique is demonstrated below by using the simple access

pattern (NVIDIA (C), 2017). In this access pattern, the kth thread accesses the kth data

element. Thus, if the threads of a warp access adjacent 4-byte floating-point variables,

which equals a single 128B L2 cache line, the processor will service all 32 threads with a

single memory access. In Figure 12, the red rectangle indicates a single 128-byte L2 cache

line that can be coalesced into a single memory transaction:

Figure 12. Coalesced Global Memory Access (NVIDIA (C), 2017)

www.manaraa.com

45

 The second technique in mitigating the time cost of accessing data from memory is

to use shared memory. Shared memory is designed with high bandwidth and low latency,

as it is used by multiple threads to cooperate across thread blocks. To achieve this, it is

divided into 32 equal-sized banks that can be accessed simultaneously, allowing all 32

threads in a warp to access the same data at the same time. Furthermore, when multiple

threads within a block need to access the same global memory addresses, shared memory

can be used to access global memory only once and in an automatically coalesced fashion.

This resulting efficiency makes shared memory the most preferred memory type when

optimizing a kernel’s memory accesses (NVIDIA (C), 2017).

When utilizing shared memory, developers must be careful to minimize bank

conflicts (NVIDIA (B), 2017). Bank conflicts occur when n threads attempt to access the

same memory bank simultaneously, causing the memory accesses to be serialized,

decreasing the bandwidth by a factor of n. Threads in a single warp, however, are an

exception. When threads in the same warp attempt to access the same shared memory bank,

copies of the data being accessed are broadcasted to each thread requesting it. This is

another reason blocks should be organized into multiples of 32 threads whenever possible

(NVIDIA (C), 2017).

Because constant memory is stored in an on-chip cache, it is very efficient under

certain conditions. If every thread within a warp accesses a single or a few memory

locations in the constant cache, a broadcast occurs, which can be as fast as a register access.

However, accesses to different memory locations in the constant cache are serialized; thus,

if each thread must access a different memory location, it would take about 32 times as

long (NVIDIA (C), 2017).

www.manaraa.com

46

Minimizing the Impact of Data Transfers

 Even on integrated GPUs that share DRAM with the CPU, data must be transferred

to the Device through a Peripheral Component Interconnect – express (PCI-e) bus

(Otterness et al., 2017), which typically has relatively low bandwidth. Therefore,

minimizing the time cost incurred when data is transferred from Host to Device and vice

versa is a high priority when optimizing an application. Strategies such as minimizing the

number of data transfers, using asynchronous memory copies, and using zero-copy

memory can help lessen the impact of costly data transfers (NVIDIA (C), 2017).

 The most direct way to minimize the total time cost incurred from data transfers is

to do fewer of them. In some instances, functions should be run on the Device even when

no performance gains are realized, strictly to refrain from transferring data between Host

and Device. It is up to the developer to experiment with their code in order to determine

the most efficient way to manage data transfers (NVIDIA (C), 2017).

 Developers utilizing a GPU will inevitably need to transfer data between the Host

and Device. Pinned memory allows for asynchronous transfers that can be used to

minimize the impact of these transfers. Pinned memory can be allocated without copying

data into a separate buffer, resulting in a simplified transfer process. It is important to note

that pinned memory is a scarce resource and must be used sparingly. Furthermore, pinned

memory takes much longer to allocate. Allocating pinned memory takes on the order of

three to five orders of magnitude longer than allocating regular Device memory (Boyer,

2013). The conventional method of transferring data between the Host and Device using

the CUDA function cudaMemcpy()is a blocking transfer, meaning the CPU remains

ideal until the memory transfer is complete. Conversely, asynchronous transfers using

www.manaraa.com

47

cudaMemcpyAsync(),are non-blocking, meaning that the CPU can continue to do work

while the transfer is being executed. Asynchronous transfers must be used in tandem with

pinned memory; hence, they are limited by the amount of pinned memory available

(NVIDIA (C), 2017).

 Depending on the program structure, data can often be broken into independent

chunks and transferred to the Device asynchronously. Since the Host is free to do work

while a data transfer is being executed, the Host can launch kernels that will be queued up

to execute immediately after the data on which they are dependent is transferred.

Furthermore, some devices can perform asynchronous memory transfers concurrently with

kernel executions. When this occurs, the 𝑘th kernel executes while the data needed by the

𝑘th + 1 kernel is being transferred. Overlapping kernel execution and data transfers can

result in faster completion times, as illustrated in Figure 13:

Figure 13. Concurrent Data Copy and Kernel Execution (NVIDIA (B), 2017)

The top “Copy data, Execute” represents the conventional sequential blocking

method, in which the Host remains idle until the data transfer is complete. The bottom

shows the concurrent method in which kernels can execute while other data is being

www.manaraa.com

48

transferred, resulting in increased runtime performance. The transfers should still be

combined whenever possible, as each transfer has intrinsic overhead (NVIDIA (C), 2017).

On integrated GPUs like the Jetson, the GPU has access to the CPU’s DRAM. This

shared DRAM allows developers to utilize a feature called zero-copy memory. Zero-copy

memory enables the passing of pointers to shared memory where data used by the kernel

is located, which eliminates the need to explicitly transfer data to and from the Host and

Device (NVIDIA (B), 2017). Zero-copy does not allow for the caching of data on the

Device, meaning each time the data is accessed through zero-copy, it must be accessed off-

chip in DRAM. Therefore, zero-copy should only be used for data that is used sparingly

on the Device (Otterness et al., 2017).

Maximizing Occupancy

 In order to maximize performance, the multiprocessors of the Host and Device

should be kept as busy as possible. A poorly structured application with multiple idle

processors will likely result in sub-optimal performance (NVIDIA (C), 2017). Therefore,

it is imperative to organize an application to use threads and blocks in such a way that

achieves the maximal occupancy of the available hardware. Occupancy can be summarized

as the ratio between the number of active warps per multiprocessor and the maximum

number of possible active warps. Consider compute capability 5.3, which can support up

to 64 active warps. This means 64 active warps per SM must be present in order for the

SM to be fully occupied. Several factors can improve occupancy, such as using concurrent

kernel executions, using the proper number of threads per block and registers per thread,

minimizing register dependencies, and using the proper amount of shared memory per

block (NVIDIA (C), 2017).

www.manaraa.com

49

 To minimize the number of idle processors on an SM, independent kernels can be

executed concurrently to ensure occupancy is being maximized. If a kernel is only using

50% of an SM’s processors, another kernel can be launched to utilize the remaining

processors. Overlapping kernel execution enable SMs to be fully occupied, even when

single kernels only use a fraction of an SM’s resources. Note that Compute Capability 5.3

supports up to 16 kernels executing on an SM simultaneously (NVIDIA (C), 2017).

 Because warps are groups of 32 threads, SMs are designed to handle multiples of

32 threads at once. For example, Compute Capability 5.3 and 6.2 can each handle up to

2048 (i.e., 32 × 64) threads per SM. This design pattern requires the number of threads per

block to be in multiples of 32 to fully maximize an SM’s occupancy (NVIDIA (C), 2017).

 The number of 32-bit registers on an SM can be a limiting factor when maximizing

occupancy. Because register storage enables the low-latency access of local variables by

keeping them on-chip, it is tempting to partition blocks such that they use enough registers

to store all of their local variables. However, registers are a limited asset; if too many

registers are being used by a thread, the number of resident thread blocks on the SM is

lowered, which lowers occupancy. Therefore, blocks must be partitioned in a way that they

take advantage of registers’ low-latency for local variables while still maintaining the

highest occupancy possible. It is also important to note that since registers are 32 bits, a

single register can store a single int (32 bits long) while it takes two registers to store a

single double (64 bits long) (NVIDIA (C), 2017).

 Register dependencies can also adversely affect occupancy. A register dependency

occurs when an impending instruction requires the result of a calculation stored in a

register. Because the current latency on CUDA-enabled devices is 24 cycles, threads must

www.manaraa.com

50

wait 24 cycles before accessing the data stored on a register. Thus, register dependencies

can force threads to stall as they await the data on a register to become available (NVIDIA

(C), 2017).

 Shared memory is also a potential limiting factor when calculating occupancy.

Much like using registers to store local variables, shared memory should be utilized to the

maximum extent possible due to its low-latency memory access. It too, however, is a scarce

resource and can limit the amount of resident warps on an SM. Hence, developers should

consider the amount of shared memory available when determining block size (NVIDIA

(C), 2017).

 Achieving maximum occupancy through trial and error would be an exhaustive

task. Therefore, the CUDA Occupancy Calculator should be used to determine the optimal

number of threads per block, registers per thread, and the amount of shared memory used

per block. Figure 14 shows the occupancy of the Jetson TX1. This example uses 256

threads per block, 32 registers per thread, and 8192 bytes of shared memory per block

(NVIDIA (C), 2017).

www.manaraa.com

51

Figure 14. CUDA Occupancy Calculator

Minimizing Thread Divergence

 Because all 32 threads within a warp execute one common instruction at a time, full

efficiency cannot be achieved if the 32 threads within a warp do not have a common

execution path (NVIDIA (B), 2017). Control flow instructions such as if, switch, do,

for, and while can cause threads within a warp to diverge by steering them down

different execution paths. When this occurs, the warp serially executes each branch path

taken, disabling all other threads within the warp until the threads converge, resulting in

slower kernel execution times (NVIDIA (C), 2017).

 Control flow statements are sometimes necessary in parallel computing, however,

often utilizing the threadIdx keyword to direct specific threads to perform specific

tasks. Kernels that require thread-ID-dependent control flow statements should be

constructed to minimize the number of divergent paths per warp. This can be accomplished

www.manaraa.com

52

by partitioning a thread’s execution path based on the warp to which it belongs, instead of

its specific thread ID (NVIDIA (C), 2017).

Instruction Optimization

 Division and modulo instructions are particularly expensive to perform on a GPU.

Thus, replacing these instances with equivalent shift operations can result in performance

gains. In the case where 𝑛 is a power of 2, (𝑖/𝑛) is equivalent to (𝑖 ≫ 𝑙𝑜𝑔2(𝑛)). For

modulo operations where 𝑛 is a power of 2, (𝑖 % 𝑛) is equivalent to (𝑖 & 𝑛 − 1). These

optimizations are considered low-priority, but can provide significant reductions in

runtimes if a kernel uses a large number of division and/or modulo operations (NVIDIA

(C), 2017).

2.4.4.4 Deploy

 Before moving on to the next hotspot identified in the ‘Assess’ step, the developer

should deploy the partially reengineered code onto a test system. This allows users to see

partial performance gains as early as possible and minimizes risk by isolating new bugs

introduced to the software by providing evolutionary versions of the application (NVIDIA

(C), 2017).

 When integrating CUDA files with the “.cu” extension with “.c/.cpp” C/C++ files,

function names become mangled. This can be avoided by using the extern “C” wrapper

on relevant functions within the “.cu” file, which ensures the function names remain

demangled. Once the functions are declared in the C++ header, the functions inside the

“.cu” files can be called from within the “.cpp” files (Oak Ridge National Laboratory,

2013).

www.manaraa.com

53

When integrating C/C++ files and CUDA into a single application, the process of

separate compilation shown in Figure 15 is used. The “.cu” files contain all CUDA code.

These files include functions executed on the Host as well as functions executed on the

Device; thus, nvcc must be used for “.cu” files. All “.cpp” files can be compiled with a

standard compiler, such as g++. The object files created by these are then linked together

using nvcc to create the executable.

Figure 15. Separate compilation process used to combine “.cu” and “.cpp” files

www.manaraa.com

54

3. Methodology

This chapter describes the methodology used to implement SP on the Jetson

TX1/TX2 and the methodology used to test the two hypotheses presented in Section 1.3.

The steps taken to successfully compile the SP software on the Jetson TX1 and TX2 are

discussed first, followed by the methods to determine the validity of its solution. The

second section discusses the methods for determining the optimal combination of compiler

flags to apply to SP. The development of a parallel geopotential model and the methods

used to determine its validity are then discussed. The final section presents the methods

used to determine the most efficient implementation of SP on the Jetson TX1/TX2.

3.1 Implementing Special Perturbations on the Jetson TX1 and TX2

The first task in completing this research was to implement SP on the Jetson TX1

and TX2 and verify that it produced the same solution as the Windows version of the

software. The first step taken to accomplish this was to reorganize the package diagram

presented in Section 2.1 to reduce redundant dependencies and resolve linkage errors so

the SP software could compile and run on the Jetson TX1/TX2. The validity of the Linux

version of SP was then determined to ensure it converged to the correct solution.

3.1.1 Compiling Special Perturbations on the Jetson TX1 and TX2

 The package diagram presented in Section 2.1 shows two primary issues that had

to be overcome in order to run SP on the Jetson TX1 and TX2. First, several “.cpp” files

are directly included in other files. Second, redundant dependencies unintentionally add to

the complexity of the code by requiring more files than necessary. These issues can result

www.manaraa.com

55

in increased compilation times or compilation failure; therefore, several components of the

software had to be restructured.

 The SP software includes three different routines used to read the three primary

types of data needed for testing and operation. The ReadMyTruth, ReadIneritalRData, and

ReadSTK routines were each contained in their own “.cpp” file. These routines are used in

the main function to read observational data, meaning their files had to be included in

SPLstSq.cpp. Since each of these files only contains a single function, they were easily

changed to header files so they could be included in SPLstSq.cpp without issue.

 Routines contained in Hamming.cpp and Observation.cpp are also used in the main

function. These files, however, both contain multiple functions and are relatively large. For

these reasons, Hamming.h and Observation.h header files were added so the functions

contained in Hamming.cpp and Observation.cpp could be included in SPLstSq.cpp.

 The two routines developed to account for the effects of air drag were contained

within the Atmosphere.cpp file. These functions are used in the dynamics model which is

comprised of the EarthTruth.cpp and EarthTruth.h files. In order to prevent the inclusion

of the Atmosphere.cpp in another file, the two air drag routines it contained were added to

EarthTruth.cpp and EarthTruth.h. This removed the necessity of including a .cpp file in

another file.

The SPLstSq.cpp file originally included two header files, LinearEquations.h and

SingularValue.h, that only included other files. The LinearEquations.h file included the

numerical.h and ludcmp.h files, while the SingularValue.h file included the numerical.h

and svd.h files. These two files were removed from the codebase and the files they

contained were included directly in SPLstSq.cpp.

www.manaraa.com

56

The TwoBodyProblem.h and Observartion.h files contained the class definitions

and functions in the same file. Therefore, the TwoBodyProblem.cpp and Observartion.cpp

files were added to separate the two. Furthermore, include guards (e.g., #ifndef,

#endif) were added to each header file used in the software. Include guards prevent

duplicate expansion that can result in linkage errors. These changes are summarized in the

following restructured package diagram:

Figure 16. Updated Package Diagram of the SP Software

3.1.2 Verifying for Correctness

Once the SP software successfully compiled and ran on the Jetson TX1 and TX2,

its accuracy in comparison to the Windows version had to be verified. The state vector of

the spacecraft is comprised of seven elements. The first three elements are the position

component, given in XYZ dimensions. The second three elements are the velocity

component, also given in XYZ dimensions. The seventh element is the B* air drag

www.manaraa.com

57

coefficient. The following parameters were used as inputs for both the Windows version

and the version running on the Jetson TX1/TX2:

Table 5. Initial State Vector

Position X: -3.71191588114069e+3

Position Y: -5.86581648105739e+3

Position Z: 2.94244366723117e-1

Velocity X: 5.63178840625886e+0

Velocity Y: -3.56186511007924e+0

Velocity Z: 3.6161019950714e+0

B* (Air Drag): 0.00e+0

Table 6. Additional Input Parameters

Epoch Time (MJD): 1.51995746598202e+4

D&O of Geopotential: 20

Sea Level Pressure: 1.01325e+5

Rejection Limit (km): 1.00e+4

Through each iteration of SP, each element of the state vector is adjusted until they

converge on the solution. Since this test case converges on the fourth iteration, there are

four additional state vectors in the Windows version. These state vectors were used as the

success criteria for determining if SP produced the correct solution. Each dimension of the

state vector’s position and velocity vectors output by the Linux version, along with B*, was

www.manaraa.com

58

compared to the output of the Windows version to determine if they converged to the same

solution. These results are presented in Section 4.1.

3.2 Optimizing the Serial Version of Special Perturbations

 Due to the large number of compiler flags available, testing each one to determine

if it benefited SP on the Jetson TX1/TX2 was impractical. Thus, only a small subset of

compiler flags was considered for this research. This section presents the methodology and

the reasoning used to determine which combination of compiler flags resulted in the fastest

runtimes.

3.2.1 Determining the Optimal Combination of Compiler Flags

 The list produced by CERN openlab (Section 2.3, Table 3) was used to down-select

from all possible compiler optimizations. The “-nolib-inline” compiler flag was not

recognized by the compilers used for the Jetson TX1 and TX2; for this reason, it was not

considered. Furthermore, the “-O2” compiler flag was added to the list and compared to

the initial, unoptimized version of SP running on the Jetson TX1/TX2 instead of using the

“-O2”-optimized version as the initial condition, as in the CERN openlab study (Botezatu,

2012).

 The method for assessing the significance of the speedup was taken from the CERN

openlab study. That is, the benefit of a certain compiler optimization was determined to be

‘significant’ if it resulted in a ≥ 1% reduction in runtime when compared to previous

versions. This experiment was considered a success if any combination of compiler

optimizations were found to reduce the runtime of SP by at least 1%.

www.manaraa.com

59

The runtime of SP on the both Jetsons was very stable. Therefore, accurate timing

statistics could be measured by running the SP program only 50 times. Degree and order

of 20 was used to test all compiler flags and the standard CPU timer, clock(), was used

to accurately measure runtimes.

3.2.2 Testing the First Hypothesis

 The first hypothesis presented in this thesis was to determine if a combination of

the selected compiler flags could be applied to SP such that it decreased its runtime

compared to the initial serial version on the Jetson TX1/TX2. Once the optimal

combination of compiler flags was determined, this hypothesis was tested by running both

versions of SP at multiple degrees and orders of the geopotential. The degrees and orders

used started at 10 and increased in increments of 5 until degree and order of 50 was reached,

with SP being run 50 times at each degree and order. This was completed for the initial

serial and optimized serial versions to attain accurate runtime statistics. Success was

achieved if the optimized serial version was faster than the initial serial version for any

degree and order less than or equal to 50.

3.3 Applying APOD to Special Perturbations

 The second hypothesis presented in this thesis questions whether the geopotential

model employed by the SP software could be implemented using parallel computing. To

accomplish this, the APOD software development cycle is applied to the SP codebase to

develop a stand-alone parallel version of the geopotential model on the Jetson TX1. Degree

and order of 50 was used for this experimentation. Next, the parallel geopotential model

was integrated into the SP software to determine if it converged to the same solution as the

www.manaraa.com

60

Windows version. The runtimes of SP using the parallel geopotential model were then

compared to the runtimes of the initial serial version running on the Jetson TX1/TX2 to

determine if any speedup was attained.

3.3.1 Assessing Special Perturbations for Hotspots

 The first step taken in applying the APOD software development cycle was to

assess SP to determine the most time-consuming components of the code. This was

accomplished using the profiling tool, nvprof. The nvprof profiling tool produced the

following flat profile:

Table 7. Flat Profile of SP Produced by nvprof

%

Time

Cum

Seconds

Self

Seconds

Calls Self

𝜇𝑠/call

Total

𝜇𝑠/call

Name

84.68 51.22 51.22 615950 83.15 83.15 Geopotential::geoECR

8.96 56.64 5.42 615950 8.80 95.08 Dynamics::Rhs

3.16 58.55 1.91 307940 6.20 196.39 hamming

2.00 59.76 1.21 615950 1.96 85.11 Geopotential::geoECI

0.60 60.12 0.36 615950 0.58 0.58 Dynamics::Atm

0.51 60.43 0.31 615950 0.50 85.70 Dynamics::Hder

0.07 60.47 0.04 615950 0.06 0.06 GreenwichSiderialTime

0.02 60.48 0.01 616453 0.02 0.02 SecondsToJulian

www.manaraa.com

61

 The profile shows that the function used by the geopotential model, goeECR, is by

far the most time-consuming routine, taking just under 85% of the total runtime. Therefore,

it was the primary focus when attempting to use parallel computing to reduce the runtime.

3.3.2 Parallelizing the Geopotential Model

 The second step of the APOD cycle, ‘Parallelize,’ was then applied to the

geopotential model. CUDA was used to develop a stand-alone version of the geoECR

routine. The results of the parallel version were then compared to those of the initial serial

version to verify their correctness.

The recursion used by Pines Method to calculate the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 arrays

presented a challenge when attempting to parallelize the model. Deterministic solutions for

each array were developed to unravel this recursion so each element of the arrays could be

calculated independently and in parallel. However, the non-recursive methods proved far

less efficient than the recursive versions. Each non-recursive version used a do-while

loop to calculate its elements, with the loop iterating up the particular thread’s index. This

created race conditions that required barriers to synchronize the threads, greatly reducing

the efficiency of this method. Hence, attempts to calculate these particular arrays on the

GPU were abandoned, meaning they had to be calculated on the Host and transferred to

the Device each time the geopotential model was called.

www.manaraa.com

62

The initial parallel implementation followed these general steps:

Table 8. Steps of Parallel Geopotential Model

1 Calculate 𝑠, 𝑡, 𝑢, 𝑟 variables

2 Calculate 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 vectors

3 Allocate Device memory (x19)

4 Transfer inputs from Host to Device (x5)

5 Launch kernel

6 Transfer outputs from Device to Host (x14)

7 Sum outputs

8 Calculate 𝑓𝐸𝐶𝑅 and 𝑃 matrices

Where the inputs consisted of the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, 𝑐𝑖𝑚𝑎𝑔 vectors and the 𝑟 variable and the

outputs consisted of the potential 𝑈 and the partially summed coefficients 𝑓𝑎𝑐1 through

𝑓𝑎𝑐44.

The size of the arrays used to compute the geopotential are determined by the

degree and order of the model. These matrices are lower triangular with their upper halves

only containing zeros. However, for ease of implementation, the initial parallel kernel was

configured such that each thread block corresponded to a particular row and each thread to

a particular element in that row. In other words, for a degree and order of nine, the initial

parallel version launched 9 + 1 = 10 blocks with 10 threads each, with almost half of the

threads remaining idle. This is shown in Figure 17:

www.manaraa.com

63

Figure 17. Representation of the Original Parallel Geopotential Model

Device memory was allocated using the cudaMalloc()function. For the initial

kernel, the Device memory for each individual input and output was allocated separately,

for a total of 19 separate calls to cudaMalloc(). The inputs were then transferred from

Host memory to Device memory using cudaMemcpy().

The kernel also required the use of the spherical harmonic coefficients of 𝐶 and 𝑆.

Since these matrices remain constant, they were allocated using __device__ memory,

meaning that they only needed to be allocated and transferred once. The kernel used these

two matrices along with the inputs to calculate the remaining arrays (e.g., the 𝐷, 𝐸, 𝐹, 𝐺,

and 𝐻) needed to compute the geopotential. These arrays were used to calculate the outputs

of the kernel. All the outputs within a single block were summed to a single value on the

Device. The outputs were individually transferred from the Device to the Host, where they

were further summed up and used to calculate the 𝑓𝐸𝐶𝑅 and 𝑃 matrices.

www.manaraa.com

64

The potential 𝑈 variable and the 𝑓𝐸𝐶𝑅 and 𝑃 matrices are the primary outputs of

the geopotential model. Thus, these elements were compared to the results of the serial

version to determine if the parallel version was correct.

3.3.3 Optimizing the Parallel Geopotential Model

 Like the APOD process as a whole, the ‘Optimize’ step, itself, is iterative. This step

was repeated until all optimization strategies were exhausted. The runtimes of each

optimization were recorded to measure any performance gains and the results were verified

against the initial serial version to ensure correctness.

 As stated in Section 2.4.4.3, CUDA enables the use of a technique called concurrent

execution that allows the CPU to continue doing work while transferring data between the

Host and Device or while a kernel is being executed. There was little work for the CPU to

accomplish while the geopotential kernel was executing; however, there was some

potential for the CPU to remain busy while transferring data. This method of using

asynchronous data transfers required the use of pinned memory, which must be allocated

using cudaMallocHost(). However, allocating pinned memory is much slower than

allocating pageable memory. This offset any time saved through concurrent execution.

Therefore, these efforts were abandoned.

3.3.3.1 First Iteration: Minimizing Effects of Data Transfers

 For the first iteration of the ‘Optimize’ step, the focus was to minimize the impact

of data transfers between the Host and Device. First, all inputs were combined into a single

vector to reduce the number of allocations and transfers. The same was done for all outputs.

Second, the use of __device__ memory was prioritized to allow data to be allocated

www.manaraa.com

65

only once throughout the lifetime of the application. This design was preferred because the

SP program calls the geopotential routine thousands of times per iteration.

Even though the same amount of data was being allocated and transferred,

minimizing the discrete number of allocations and data transfers is important because of

the inherent overhead in each allocation and transfer. The 𝑠, 𝑡, 𝑢, and 𝑟 variables were

combined with the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, and 𝑐𝑖𝑚𝑎𝑔 matrices into a single vector. Similarly, the

potential 𝑈 and all partial coefficients of acceleration were combined into a single output

vector. This decreased the total number of memory allocations and data transfers needed

each time the geopotential routine was called from nineteen to two.

Because the SP algorithm computes the geopotential thousands of times over the

course of a single iteration, the memory used for the input and output vectors could remain

allocated and be used multiple times. This approach was already being used for the 𝐶 and

𝑆 matrices and was extended to the input and output vectors by declaring them as

__device__ memory. Unlike 𝐶 and 𝑆, which remain constant, the input and output

vectors had to be transferred to the Device each time the geopotential was calculated.

However, this still prevented the need to re-allocate memory for the inputs and outputs.

3.3.3.2 Second Iteration: Maximizing Occupancy

 The second iteration of the optimization cycle focused on maximizing the

occupancy of the GPU. The kernel was restructured to account for the use of lower

triangular matrices, which left almost half of the threads idle in the original kernel. The

CUDA Occupancy Calculator was then used as a guide to ensure proper utilization of the

GPU’s computing resources.

www.manaraa.com

66

 In the original parallel kernel, each row corresponded to a thread block and each

element in the row corresponded to an individual thread. Because these matrices are lower

triangular, the first row only contained one element, with the rest being zeros. Thus, in the

original configuration, only one thread in the first thread block accomplished any work.

This was changed to eliminate the idle threads. However, the vectors still needed to be

traversed as though they were square matrices. Therefore, the 𝑟𝑜𝑤𝐼𝑑𝑥 and 𝑐𝑜𝑙𝐼𝑑𝑥 vectors

were created to allow each thread to recall its original position in the matrix. Since these

vectors remain constant throughout the lifetime of the application, they were declared as

__device__ vectors so they only had to be allocated and transferred to the Device once.

 The CUDA Occupancy Calculator was used to ensure the maximum occupancy

was achieved within the given hardware limitations. The first limiting factor was the

number of physical CUDA cores on the GPU. GPUs of Compute Capability 5.3 and 6.2

both have two SMs with 128 CUDA cores each, for a total of 256. This is the maximum

number of active threads possible. By design, it is also a multiple of 32, meaning it is

aligned with the amount of threads per warp. For these reasons, the number of threads per

block was changed to 256.

www.manaraa.com

67

Figure 18. Improved Occupancy of Parallel Geopotential Model for the Jetson TX1

The second limiting factor was the amount of __shared__ memory available for

each thread block. This type of memory is the most efficient and should be used as much

as possible. However, if the recommended amount of shared memory is exceeded, the GPU

will prevent other blocks from executing until shared memory is freed, thus reducing

occupancy.

Figure 19 shows how occupancy is affected by the amount of shared memory when

each block has 256 threads. When block size is 256, up to 8,192 bytes of shared memory

can be used and 100% occupancy still be achieved. If each block uses 14,864 bytes of

shared memory, only 50% occupancy is possible. For this reason, the amount of shared

memory allowed per block was not allowed to exceed 8,192 bytes.

www.manaraa.com

68

Figure 19. Occupancy as a Function of Shared Memory

These 8,192 bytes of shared memory were divided into four 2,048 byte chunks.

Since the summation operation requires the use of shared memory, three of the chunks

were used to allocate shared workspaces to sum up the factors of the partial coefficients.

These workspaces are reused to calculate the 14 outputs. The input vectors 𝜌, 𝑐𝑟𝑒𝑎𝑙 , and

𝑐𝑖𝑚𝑎𝑔 are used repeatedly, so the remaining chunk of shared memory was used to store

these vectors.

 The third limiting factor of occupancy was the amount of local registers used by

each thread. With 256 threads per block, 100% occupancy was only achieved when each

thread used 32 registers or fewer. This was accomplished by passing the –

maxrregcount=32 flag to the compiler that prevented threads from decreasing the

occupancy by using more than 32 registers.

www.manaraa.com

69

3.3.3.3 Third Iteration: Applying Reduction Operation

The partial factors calculated on the GPU had to be summed to form the final partial

coefficients of acceleration. This summation operation was able to be performed in parallel

on the GPU by using a reduction operation. The following simple parallel reduction routine

was developed that sums all of the partial factors elements within a given thread block:

int n = 8;

int Exp = 1;

for(int i = 0; i < n; i++)

{

 Exp = Exp*2;

 if(threadIdx.x % Exp == 0)

 {

 facA[threadIdx.x] =

facA[threadIdx.x]+facA[threadIdx.x+(Exp/2)];

 facB[threadIdx.x] =

facB[threadIdx.x]+facB[threadIdx.x+(Exp/2)];

 facC[threadIdx.x] =

facC[threadIdx.x]+facC[threadIdx.x+(Exp/2)];

}

}

Because the blocks are of size 256, the for loop must iterate log2 256 = 8 times. This

routine reduced the total number of sequential double-precision arithmetic operations

required per block from 3,584 to 112. It was further optimized by unrolling the for loop.

This prevented the need to initialize and calculate intermediary values such as 𝑖 and 𝑛.

3.3.3.4 Fourth Iteration: Minimizing Thread Divergence

In order to calculate the partial coefficients, each thread requires the use of the 𝑛th,

𝑛 − 1st, and 𝑛 − 2nd elements from the 𝑐𝑟𝑒𝑎𝑙 and 𝑐𝑖𝑚𝑎𝑔 vectors, where 𝑛 is the thread’s

column index. Thus, if statements had to be implemented to ensure any threads with a

column index of two or less did not attempt to access elements outside of the bounds of the

vector. This introduced thread divergence that negatively affected the efficiency of the

kernel.

www.manaraa.com

70

This thread divergence was minimized by zero-padding the 𝑐𝑟𝑒𝑎𝑙 and 𝑐𝑖𝑚𝑎𝑔 vectors.

That is, the first two elements of these vectors were changed to zeros, and the rest of the

elements vector were offset by two. This meant that a thread with a column index of zero

could access the 0 − 2 = −2nd element without conflict. In the original parallel kernel,

eight if statements that diverged based on a thread’s column index were required. Through

zero-padding, this was reduced to three.

3.3.3.5 Fifth Iteration: Instruction Optimization

 The reduction operation developed for the kernel used the modulo operator a total

of 40 times per thread. Although a single invocation of the modulo operator per thread is

relatively insignificant to the overall runtime of the kernel, 40 invocations of the modulo

operator can hamper performance. Therefore, each of these instances was changed to the

equivalent shift operation. Even though this optimization is low-level, the benefit increases

with the number of threads being executed.

3.3.3.6 Measuring Performance when Optimizing the Parallel Geopotential Model

 To ensure each optimization strategy resulted in adequate performance gains,

accurate runtime statistics had to be calculated for the stand-alone parallel geopotential

model. To accomplish this, the setup, execution, and post-processing for the parallel

geopotential model was wrapped in a for loop and iterated 1,000 times. Each time the

for loop iterated, the runtime was output to a spreadsheet. A shell script was used to repeat

this process 100 times for each version of the geopotential model, and resulted in 100,000

data points per version. cudaEvents were used to accurately measure runtime.

www.manaraa.com

71

3.3.4 Deploying the Parallel Geopotential Model

 Once the parallel geopotential was optimized, it had to be integrated into the SP

codebase in order to determine if it converged to the same solution as the serial version.

This was accomplished by using extern “C” to ensure the function names in the CUDA

file were able to be read by the C++ files and by compiling the CUDA file separately from

the C++ files.

The CudaConstructor and CallGeoEcrKernel functions were wrapped in extern

“C” and declared in the Geopotential.h header file. The CudaConstructor function

transfers the 𝐶, 𝑆, 𝑟𝑜𝑤𝐼𝑑𝑥, and 𝑐𝑜𝑙𝐼𝑑𝑥 vectors to the Device. Because these inputs remain

constant throughout the lifetime of the application, they only need to be transferred once.

Thus, the CudaConstructor function is only called a single time. The CallGeoEcrKernel

function calculates the 𝐴, 𝜌, 𝑐𝑟𝑒𝑎𝑙, and 𝑐𝑖𝑚𝑎𝑔 vectors, transfers them to the Device, calls the

kernel, and performs post-processing on the results. The kernel itself, however, was not

required to use the extern “C” wrapper since the kernel was both declared and called

from within the CUDA file. The “.cu” file containing the CudaConstructor and

CallGeoEcrKernel functions were compiled with nvcc, and all “.cpp” files used by SP were

compiled using g++. The resulting “.obj” files were then linked together with nvcc to form

the executable.

3.3.5 Verifying the Parallel Version of Special Perturbations

 To determine if the parallel geopotential model worked properly, SP had to

converge to the correct solution using the parallel geopotential model. This verification

was accomplished using the same methodology described in Section 3.1.2. The solution of

www.manaraa.com

72

the parallel version was compared to the truth data produced by the Windows version of

SP to determine if the parallel version converged to the correct solution.

3.3.6 Testing the Second Hypothesis

 The second hypothesis presented in this thesis was to determine if portions of SP

could be implemented in parallel on the Jetsons’ GPUs such that it reduced the runtimes of

SP compared to the initial serial version. This hypothesis was tested using the same

methodology described in Section 3.2.2, but used cudaEvents in lieu of CPU timers to

accurately measure the parallel version of the code. Success was achieved if the parallel

version of SP was faster than the initial serial version for any degree and order less than or

equal to 50.

3.4 Determining the Most Efficient Implementation

 Once the initial serial version of SP was optimized via compiler flags and the

parallel geopotential model was integrated into the SP codebase, the average runtimes of

each version of SP on the two Jetsons were compared. Accurate runtime statistics of the

serial versions of SP were taken using the same methodologies described in Sections 3.2.2

and 3.3.6.

Because the implementation of SP used in this research uses geopotential of up to

degree and order of 50, the degree and order was started at 10 and incremented by 5 until

50 was reached for the initial serial, optimized serial, and parallel versions of SP. The input

parameters presented in Section 3.1.2 were used. The results were then compared to one

another to determine the best way to implement SP on the Jetson TX1 and TX2. The

www.manaraa.com

73

percentage of improvement of the Jetson TX2 over the Jetson TX1 was also compared for

each version of SP.

www.manaraa.com

74

4. Analysis and Results

This chapter presents the results and analysis of the experiments described in

Chapter III. The first section analyzes the state vectors produced by the initial serial version

of SP on the Jetson TX1/TX2 compared to the state vectors produced by the Windows

version. The results of applying different combinations of compiler optimizations to SP are

discussed in the second section. The third section presents the results of developing and

optimizing the parallel geopotential model. The results of SP using the parallel geopotential

model are also analyzed to show that it converged to the correct solution. The final section

in this chapter compares the runtimes of the initial serial version of SP to the optimized

serial and parallel versions on the Jetson TX1 and TX2 to determine the most efficient way

to implement SP on each Jetson. This section also compares the performance of the Jetson

TX2 over the TX1.

4.1 Implementing Special Perturbations on the Jetson TX1 and TX2

The first task completed for this research was to implement the SP software on the

Jetson TX1 and TX2 such that both converged to the correct solution. This section presents

the resulting state vectors produced by SP on the Jetson TX1/TX2 compared to truth data

produced by the Windows version.

 The test case used in this research iterated through SP a total of four times before it

converged to the correct solution. Thus, each component of the state vectors produced by

SP on the Jetson TX1 and TX2 was compared to the truth data at each iteration to determine

the extent of the deviation.

www.manaraa.com

75

The root-mean-square (RMS) of the position and velocity components of the state

vectors, as well as the air drag coefficients, over each iteration of SP are shown in Figures

20-22. Figure 20 shows the RMS for the position component of the state vectors at each

iteration of SP. Figures 21 and 22 show the RMS for the velocity components of the state

vectors and the air drag coefficients, respectively. Each of these components of the state

vectors converge to the solution on the fourth iteration of SP.

Figure 20. RMS of Position Components Converge, D&O = 20

www.manaraa.com

76

Figure 21. RMS of Velocity Components Converge, D&O = 20

Figure 22. Air Drag Coefficients Converge, D&O = 20

www.manaraa.com

77

Table 9 presents the final state vectors produced by SP on the Jetsons. The X- and

Y- components of the position vector produced by SP on the Jetson TX1/TX2 agree with

the truth data to the eighth decimal place, while the Z- component agrees with the truth

data to the seventh decimal place. The X- and Y- components of the velocity vector agree

with the truth data to the tenth decimal place, while Z- components agree to the eleventh

decimal place. Finally, the air drag coefficients agree to the eleventh decimal place.

Table 9. Converged State Vectors Produced by SP

 Truth Data Jetson TX1/TX2

Position X: -3.71202483895854e+3 -3.71202483895187e+3

Position Y: -5.86571445840261e+3 -5.86571445840703e+3

Position Z: -2.16592610235187e-1 -2.16592605867213e-1

Velocity X: 5.63172597015199e+0 5.63172597015723e+0

Velocity Y: -3.56203592928780e+0 -3.56203592927947e+0

Velocity Z: 3.61614435881406e+0 3.61614435881398e+0

B* (Air Drag): 1.206715481898e-5 1.20671556188568e-5

 The difference between the converged state vector produced by the Jetson

TX1/TX2 and the truth data produced by the Windows version is presented in Table 10.

The accuracy of the Jetson TX1/TX2 solution is also given as a percentage of the truth

data, with the largest deviation from a perfect solution being the Z- component of the

position vector.

www.manaraa.com

78

Table 10. Accuracy of Jetson TX1/TX2 Converged State Vector

 Difference %

Position X: -6.66977939545177e-9 99.9999999998203

Position Y: 4.42014425061643e-9 100.000000000075

Position Z: -4.36797401026645e-9 99.9999979833227

Velocity X: -5.24025267623074e-12 100.000000000093

Velocity Y: -8.32978130915762e-12 99.9999999997661

Velocity Z: 7.99360577730113e-14 99.9999999999978

B* (Air Drag): -7.99876800265751e-13 100.000006628545

 These results show that the initial serial version of SP implemented on the Jetson

TX1/TX2 converged to the correct solution. Once this task was completed, the two

hypotheses could be tested.

4.2 Optimizing the Serial Version of Special Perturbations

This section presents the results of applying different combinations of compiler

flags to the initial serial version of SP on the Jetson TX1 and TX2. Only the flags that

reduced the runtime of SP by at least 1% were included in the final version. Table 3 in

Section 2.3 was used as the starting point, with the “-nolib-inline” flag deleted and the “-

O2” added to the list. Once the optimal combination of compiler flags was determined, the

runtimes of the optimized serial version of SP were compared to the runtimes of the initial

serial version to test the first hypothesis.

www.manaraa.com

79

4.2.1 Determining the Optimal Combination of Compiler Flags

 Since the impact of the results from this test was the same for the TX1 and TX2,

only the results from the TX1 are shown in Figure 23. The red line is the runtime of the

initial serial version of SP, with the “-O2” and “-O3” versions shown in green. For both

the Jetson TX1 and TX2, only the “-O2” and “-O3” compiler flags resulted in a significant

reduction in the runtime of SP.

Figure 23. Compiler Optimizations Applied to SP on Jetson TX1, D&O = 20

 Table 11 shows the results from using the compiler flags recommended by the

CERN openlab study on both the Jetson TX1 and TX2. Applying the “-O2” flag reduced

the speed by approximately 78% on both Jetsons, while the “-O3” flag only reduced the

speed by 72%.

www.manaraa.com

80

Table 11. Compiler Optimizations Applied to SP on Jetson TX1/TX2

Compiler Flag Mean

Runtime on

TX1 (s)

Speedup

on TX1

(%)

Mean

Runtime on

TX2 (s)

Speedup

on TX2

(%)

None 61.32 -- 53.73 --

-O2 13.70 77.66 11.43 78.73

-O3 17.13 72.06 15.04 72.01

-ipo 61.35 -0.06 53.78 -0.08

-opt-ra-region-strategy=routine 61.35 -0.04 53.36 0.70

-ip 61.31 0.01 53.82 -0.15

-opt-ra-region-strategy=block 61.36 -0.07 53.73 0.01

-funroll-all-loops 61.41 -0.15 53.67 0.12

-inline-forceinline 61.35 -0.05 53.63 0.19

-opt-class-analysis 61.30 0.03 53.92 -0.34

-opt-streaming-stores-always 61.32 -0.01 53.80 -0.13

-opt-prefetch=4 61.35 -0.06 53.82 -0.16

-falign-functions 61.30 0.03 53.58 0.28

-unroll-aggressive 61.35 -0.05 53.87 -0.26

-fno-inline-functions 61.35 -0.05 53.73 -0.01

-opt-block-factor=16 61.34 -0.03 53.57 0.31

-opt-block-factor=2 61.39 -0.11 53.58 0.29

www.manaraa.com

81

 The “-O3” flag consists of all the optimizations of the “-O2” flag plus 14 others

(Section 2.3, Table 4). This inferred that one or more of the additional optimizations

included in the “-O3” flag was negatively affecting the performance of the application. For

this reason, another similar test was run in which each optimization of the “-O3” flag was

individually paired with the “-O2” flag and compared to the “-O2”-optimized version to

determine its effects on runtime. These results were slightly different for the Jetson TX1

and TX2; therefore, both sets of results are presented.

Figure 24. “-O2/O3” Optimizations Applied to SP on Jetson TX1, D&O = 20

www.manaraa.com

82

Figure 25. “-O2/O3” Optimizations Applied to SP on Jetson TX2, D&O = 20

Table 12. “-O2/O3” Optimizations Applied to SP on Jetson TX1/TX2, D&O = 20

Compiler Flag Mean

Runtime on

TX1 (s)

Speedup

on TX1

(%)

Mean

Runtime on

TX2 (s)

Speedup

on TX2

(%)

-O2 13.70 -- 11.48 --

-finline-functions 13.60 0.70 11.38 0.82

-funswitch-loops 13.61 0.64 11.42 0.48

-fpredictive-commoning 13.18 3.79 11.06 3.69

-fgcse-after-reload 13.67 0.25 11.45 0.25

-ftree-loop-vectorize 13.58 0.88 11.44 0.35

-ftree-loop-distribution 13.70 0.05 11.48 -0.01

www.manaraa.com

83

-ftree-loop-distribute-

patterns

18.61 -35.87 15.63 -36.12

-floop-interchange 13.60 0.76 11.48 -0.01

-ftree-slp-vectorize 13.69 0.09 11.36 1.00

-fvect-cost-model 13.68 0.12 11.47 0.04

-ftree-partial-pre 13.58 0.88 11.55 -0.61

-fpeel-loops 13.35 2.55 11.08 3.51

-fipa-cp-clone 13.67 0.24 11.48 0.00

-O2 + Green 12.74 7.00 10.61 7.55

 For both Jetsons, the compiler flag “-free-loop-distribute-patterns” negatively

affected the runtime of SP. Contrarily, the “-fpredictive-commoning” and “-fpeel-loops”

flags positively affected performance on both computers. On the Jetson TX2, the “-ftree-

slp-vectorize” optimization reduced the runtime of SP by just over 1%. None of the other

compiler flags had any significant effect on either machine.

On the Jetson TX1, the “-fpredictive-commoning” and “-fpeel-loops”

optimizations were combined with the “-O2” flag to form the “-O2 + Green” simulation

shown in Figure 24, which reduced the runtime by 7% compared to the “-O2”-optimized

version. On the TX2, the “-ftree-slp-vectorize” optimization was included in the “-O2 +

Green” simulation. This reduced the runtime by 7.55% compared to the “-O2”-optimized

version. These combinations of compiler optimizations formed the most efficient

implementations of SP on each machine.

www.manaraa.com

84

4.2.2 Testing the First Hypothesis

 Once the optimal combination of compiler flags was applied, the first hypothesis

could be tested to determine if the runtimes of the optimized serial version were less than

those of the initial serial version. Figure 26 shows the resulting runtimes of the optimized

serial version compared to the initial serial version for degrees and orders 10-50. At degree

and order of 10, the optimized serial version converged in approximately five seconds on

both machines, compared to the initial serial version which converged in 22-26 seconds.

At degree and order of 50, the optimized serial version converged in 48-57 seconds, a full

200 seconds faster than the initial serial version.

Figure 26. Initial Serial Version vs. Optimized Serial Version of SP

www.manaraa.com

85

 These results showed that the optimized serial version significantly outpaced the

initial serial version for all degrees and orders tested. The combination of compiler

optimizations used reduced the runtime of the initial serial version by an average of almost

80%. Thus, the evidence produced by these tests strongly supported the first hypothesis.

4.3 Applying APOD to Special Perturbations

This section analyzes the results of optimizing and deploying the parallel

geopotential. The runtime of the parallel geopotential model was measured after the initial

parallelization step was completed and measured again after each subsequent optimization

step to ensure the optimization technique was beneficial. Because a large portion of the

geopotential was still calculated on the Host, the compiler optimizations described in

Section 4.2 were applied. Once all major optimization strategies were exhausted, the

parallel geopotential model was integrated into the SP codebase and ran to ensure it

converged to the correct solution.

4.3.1 Runtime Analysis of Optimizing the Parallel Geopotential Model

Once the results of initial parallel geopotential were verified for correctness, its

runtime was measured before entering the optimization step. The mean runtime of the

parallel geopotential was remeasured after each iteration of optimization to determine the

performance gains of each optimization strategy. Figure 27 shows the mean runtime of the

initial parallel geopotential model and the mean runtime after each iteration of the

optimization step compared to the runtime of the serial version, all at degree and order of

50:

www.manaraa.com

86

Figure 27. Runtime of Parallel Geopotential through Optimization Steps, D&O = 50

 As described in Section 3.3.3.1, the first optimization technique applied to the

parallel geopotential model was to minimize the impact of transferring data between the

CPU and GPU. This optimization reduced the runtime of the parallel geopotential by more

than 81%. The second optimization applied was to maximize the occupancy of the GPU.

Although this only reduced the runtime by 6% over the previous version, it was essential

to apply since the benefit of maximizing occupancy grows with the number of threads

being run on the GPU. The third optimization strategy was to implement the reduction

operation presented in Section 3.3.3.3. The initial implementation of the reduction

operation used a for loop; however, the reduction operation was further optimized by

unrolling the for loop. This reduced the runtime by 10% compared to the previous

version. The next optimization strategy applied was to reduce thread divergence within the

kernel. This reduced the runtime of the previous version by over 21%. The final

optimization strategy was to implement instruction-level optimizations for all modulo

www.manaraa.com

87

operations in the kernel. The benefit of this optimization was very small, which indicated

the kernel was as optimized as possible in its current form. These five optimization

strategies resulted in an overall runtime reduction of almost 88% over the initial parallel

geopotential model. These results are presented in Table 13:

Table 13. Improvement of Parallel Geopotential through Optimization Steps,

D&O = 50

Iteration Description Mean Runtime (ms) % Improved

0 Initial Parallel Geopotential Model 1.1370 --

1 Minimized Impact of Data Transfers 0.2100 81.53

2 Maximized Occupancy 0.1977 5.87

3 Implemented Reduction Operation 0.1776 10.15

4 Minimized Thread Divergence 0.1395 21.43

5 Instruction Optimization 0.1391 0.30

Total Runtime Improvement (%): 87.76

4.3.2 Verifying the Parallel Version of Special Perturbations

 Once the parallel geopotential was optimized, it was integrated into the SP codebase

and ran to ensure it converged to the correct solution. Table 14 contains the comparison of

the truth data with the final state vector produced by SP using the parallel geopotential

model. It shows that the position component of the state vector produced using the parallel

geopotential model matches the truth data to the eighth decimal place. The velocity

component matches the truth data to the eleventh decimal place, and the air drag

coefficients match to the twelfth decimal place.

www.manaraa.com

88

Table 14. Accuracy of State Vector Produced Using the Parallel Geopotential Model

 Difference Percentage

Position X: -3.57977114617825e-9 99.9999999999036

Position Y: 2.25008989218622e-9 100.000000000038

Position Z: -2.39030001347729e-9 99.9999988964074

Velocity X: -2.87947443666781e-12 100.000000000051

Velocity Y: -4.38982183936787e-12 99.9999999998767

Velocity Z: 1.02140518265514e-14 99.9999999999997

B* (Air Drag): -9.99599700091786e-13 100.000008283640

4.3.3 Testing the Second Hypothesis

 Once the parallel geopotential model was deployed into the SP codebase, the

second hypothesis could be tested to determine if parallelizing the geopotential model

would decrease the runtimes of the initial serial version of SP for any degree and order less

than or equal to 50. Figure 28 shows the runtimes of the parallel version and the initial

serial version using degrees and orders 10-50 on both Jetsons. At degree and order of 10,

the initial serial versions converged in 22-26 seconds while the parallel versions took

between 65-80 seconds. However, the parallel versions broke even with the initial serial

versions at degree and order of 26 on the TX1 and 28 on the TX2. By degree and order of

50, the parallel version resulted in an average runtime reduction of 54 − 56% over the

initial serial version.

www.manaraa.com

89

Figure 28. Initial Serial Version vs. Parallel Version of SP

The runtimes of the parallel version on the Jetson TX1 increase in increments

instead of a steady incline like those on the TX2. The degrees and orders at which the

runtimes on the TX1 increase correlate to the number of thread blocks being launched.

When degree and order was set to 30, three thread blocks of 256 threads each were

launched on the GPU. At degree and order of 35, four thread blocks were launched.

At degree and order of 10, the initial serial version was faster on both machines.

However, the parallel version outpaced the initial serial versions for any degree and order

greater than 26 on the TX1 and 28 on the TX2. Since the parallel version was faster than

the initial serial version for degrees and orders less than 50, the results of this test strongly

supported the second hypothesis.

www.manaraa.com

90

4.4 Determining the Most Efficient Implementation

 After the optimized serial version and the parallel version were implemented, the

runtimes of the two versions were compared to the initial serial version of SP. The results

of these tests concluded the best way to implement SP on both the Jetson TX1 and TX2

was the optimized serial version. This section presents these results and the accompanying

analysis.

4.4.1 Special Perturbations on the Jetson TX1

 Despite the parallel version being faster than the initial serial version for any degree

and order higher than 26 on the TX1, the optimized serial version was the fastest overall.

Figure 29 shows the comparison of the runtimes of the three versions of SP on the Jetson

TX1. For all degrees and orders tested, the optimized serial version significantly outpaced

the parallel version. The runtimes of the parallel version grew at a slower rate than those

of the optimized serial version, meaning the parallel version would likely outpace the

optimized serial version at higher degrees and orders. However, since the implementation

of SP being used only uses degree and order of 50 or less, the optimized serial version

remains the most efficient implementation.

www.manaraa.com

91

Figure 29. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1

 These results are also presented in Table 15 for each degree and order tested. The

percentage of speedup of the optimized serial and parallel versions is in relation to the

initial serial version. At degree and order of 50, the optimized serial version is over

80% faster than the initial serial version, while the parallel version is only 54% faster,

making the optimized serial version the most efficient way to implement SP on the Jetson

TX1.

www.manaraa.com

92

Table 15. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX1

D&O of

Geopotential

Initial

Serial

Version (s)

Optimized

Serial

Version (s)

Optimized

Serial Speedup

(%)

Parallel

Version

(s)

Parallel

Speedup

(%)

10 25.76 5.80 77.50 62.37 -142.11

15 40.92 8.77 78.56 73.07 -78.57

20 61.32 12.76 79.18 85.19 -38.93

25 87.00 17.74 79.61 88.45 -1.67

30 117.81 23.72 79.87 92.03 21.88

35 153.95 30.64 80.09 124.15 19.36

40 195.86 38.61 80.29 127.75 34.77

45 242.54 47.45 80.43 129.84 46.47

50 294.36 57.11 80.60 134.19 54.41

4.4.2 Special Perturbations on the Jetson TX2

 As on the Jetson TX1, the optimized serial version was the most efficient way to

implement SP on the TX2. The parallel version broke even with the initial serial version at

degree and order of 28. However, the runtimes of the optimized serial version were much

faster, as seen in Figure 30:

www.manaraa.com

93

Figure 30. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2

 At degree and order of 50, the optimized serial version is 81% faster than the initial

serial version. The parallel version is only 56% faster at this degree and order. Thus, the

optimized serial version was the most efficient way to implement SP on the Jetson TX2.

This data is shown in Table 16:

www.manaraa.com

94

Table 16. Initial Serial vs. Optimized Serial vs. Parallel Version of SP, Jetson TX2

D&O of

Geopotential

Initial

Serial

Version (s)

Optimized

Serial

Version (s)

Optimized

Serial Speedup

(%)

Parallel

Version (s)

Parallel

Speedup

(%)

10 21.93 4.75 78.33 85.94 -291.92

15 35.00 7.28 79.19 87.21 -149.17

20 52.48 10.62 79.76 90.34 -72.15

25 74.39 14.80 80.11 92.72 -24.65

30 100.98 19.80 80.39 95.49 5.44

35 131.92 25.66 80.55 98.17 25.59

40 167.52 32.30 80.72 102.81 38.62

45 207.58 39.74 80.85 106.71 48.59

50 251.97 47.87 81.00 111.50 55.75

4.4.3 Special Perturbations on the Jetson TX1 vs. the Jetson TX2

 The extent to which SP performs better on the Jetson TX2 compared to the TX1

was also recorded for this research. The runtimes of SP on each machine used in Sections

4.4.1 and 4.4.2 were compared to determine how much faster the Jetson TX2’s CPU and

GPU performed compared to the TX1’s. Figure 31 compares the runtimes of the optimized

serial version on the TX2 and TX1.

www.manaraa.com

95

Figure 31. Optimized Serial Version of SP on Jetson TX1 vs. TX2

Table 17 compares the performance of the optimized serial version on each of the

Jetsons’ CPUs. At degree and order of 50, the Jetson TX2 outpaced the TX1 by just under

10 seconds. This equates to a speedup of 16%.

Table 17. Optimized Serial Version of SP on Jetson TX1 vs. TX2

D&O of

Geopotential

Optimized Serial

Version on TX1

Optimized Serial

Version on TX2

Speedup of TX2

(%)

10 5.80 4.75 18.02

15 8.77 7.28 16.97

20 12.76 10.62 16.78

25 17.74 14.80 16.59

30 23.72 19.80 16.51

www.manaraa.com

96

35 30.64 25.66 16.27

40 38.61 32.30 16.35

45 47.45 39.74 16.25

50 57.11 47.87 16.19

 Next, the runtimes of the parallel versions on each machine were compared. Figure

32 and Table 18 below show the performance of the parallel version of SP on the Jetson

TX2 compared to the TX1. At degree and order of 50, the Jetson TX2 converged almost

17% faster than the TX1.

Figure 32. Parallel Version of SP on Jetson TX1 vs. TX2

www.manaraa.com

97

Table 18. Parallel Version of SP on Jetson TX1 vs. TX2

D&O of

Geopotential

Parallel Version on

TX1

Parallel Version on

TX2

Speedup of TX2

(%)

10 62.37 85.94 -37.80

15 73.07 87.21 -19.35

20 85.19 90.34 -6.04

25 88.45 92.72 -4.82

30 92.03 95.49 -3.76

35 124.15 98.17 20.93

40 127.75 102.81 19.52

45 129.84 106.71 17.81

50 134.19 111.50 16.91

www.manaraa.com

98

5. Conclusions and Recommendations

This section presents the conclusions associated with this research. The results of

two hypotheses are summarized and the significance of this research is discussed.

Recommendations for future work are also presented.

5.1 Research Summary and Conclusions

 The ultimate goal of the research conducted in this thesis was to determine the most

efficient way to implement SP on the Jetson TX1 and TX2. Before that determination could

be made, the implementation of SP developed for a Windows machine had to be ported

over to the Linux operating system used by the Jetson TX series of computers and the two

hypotheses had to be tested. The results of the first hypothesis determined the optimal

combination of compiler flags to apply to SP that would reduce SP’s runtime. The results

of the second hypothesis showed that the Jetsons’ GPUs could be used to reduce the

runtime of SP. The results of the two hypotheses were then used to determine the most

efficient way to implement SP on the Jetson TX1 and TX2.

 Before the two hypotheses could be tested, the SP software had to be reconfigured

to run on the Jetson TX1 and TX2. Through reorganizing the package diagrams, the SP

codebase was able to be implemented on the Jetsons such that it converged to the same

solution as the original Windows version.

 Once the SP software was reconfigured to run on the Jetson TX1/TX2, the first

hypothesis was able to be tested. The study conducted by CERN openlab provided a guide

to which compiler flags should be included. Although the majority of the compiler

optimizations suggested by the study had negligible affects, the “-O2” and “-O3” compiler

www.manaraa.com

99

flags significantly reduced the runtime of SP. Since the benefit of using the “-O3” compiler

flag was less than that of using the “-O2” compiler flag, an additional test was conducted

for both the Jetson TX1 and TX2 to determine if certain individual compiler optimizations

included in the “-O3” compiler flag would reduce the runtimes further. The “-fpredictive-

commoning” and “-fpeel-loops” compiler optimizations, when combined with “-O2”

compiler flag, resulted in the fastest runtimes on the Jetson TX1. On the TX2, the “-ftree-

slp-vectorize” compiler flag was added to the combination of compiler flags to produce the

optimal solution. The runtimes of the optimized serial versions were significantly less than

the initial serial version, which strongly supported the first hypothesis.

 The APOD software development cycle was then applied to the initial serial version

of SP to test the second hypothesis of determining whether parallel computing using the

Jetsons’ GPUs could reduce the runtimes of SP. The ‘Assess’ step of the APOD cycle

revealed that the majority of SP’s runtime was calculating the geopotential. For this reason,

the ‘Parallel’ step focused on this portion of the code. An initial parallel version of Pines

Method for computing the geopotential was developed and verified. The ‘Optimize’ step

of APOD was then applied to the initial parallel version. The parallel geopotential model

underwent five optimization iterations, resulting in an 88% reduction in runtime compared

to the initial parallel version. Once all major optimization strategies were applied, the

parallel geopotential model was deployed into the SP codebase and verified to confirm it

converged to the correct solution. The version of SP using the parallel geopotential was

faster than the initial serial version at any degree and order higher than 26 on the Jetson

TX1 and 28 on the TX2, which strongly supported the second hypothesis.

www.manaraa.com

100

 The results of these hypotheses were used to determine the most efficient way to

implement SP on the Jetson TX1 and TX2. The optimized serial version and the parallel

version of SP were compared to the initial serial version to determine which resulted in the

fastest runtimes. Although the parallel version was faster than the initial serial version at

higher orders of the geopotential, the optimized serial version resulted in the fastest

runtimes by far. Therefore, the optimized serial version is the best version to use when

implementing SP on the Jetson TX1 and TX2.

5.2 Research Significance

 The results of the research conducted in this thesis have shown that SP has become

a viable option for performing OD onboard a spacecraft. When implemented on the Jetson

TX series of computers, SP can converge in as little as 5 seconds when degree and order

of 10 is used for the geopotential. When degree and order of 50 is used, SP can converge

in 47 seconds. This is significantly faster than the original Windows version on the SBC.

This will allow the SOS payload to achieve much higher accuracy than that produced by

using SGP4.

 Knowing the precise location of a spacecraft at future epochs is paramount in

avoiding conjunctions. This is especially important due to the increasing congestion of the

space domain. Higher accuracy OD performed onboard the spacecraft via SP will enable

SSA assets to maintain tight control over where spacecraft are located and reduce the

likelihood of an unintended conjunction.

www.manaraa.com

101

5.3 Recommendations for Future Work

 The research presented in this thesis could be furthered in two primary ways. First

and foremost, additional test cases could be developed and applied to SP on the Jetson

TX1/TX2. Secondly, a different approach to parallelizing SP could be investigated to

determine if the runtime could be further reduced.

 One of the limitations accepted for this research was the use of a single test case.

Although this test case was sufficient for preliminary experimentation, more rigorous

testing is required to ensure the software would operate properly under all possible

operating conditions. Once additional test cases are developed, the Systems Tool Kit (STK)

could be used to simulate the spacecraft in a real-world environment. This experimentation

should be completed before SP is integrated into the SOS payload.

 The second recommendation for future work is to investigate a different approach

to using parallel processing to run SP. SP uses numerical integration to estimate a

spacecraft’s position and velocity over small, consecutive integrals. Since these integrals

are consecutive, calculating them in parallel cannot be accomplished in a straightforward

way. However, there is a method for doing this that involves doing a first ‘rough’ pass with

large intervals. This initial rough pass is shown in Figure 33:

www.manaraa.com

102

Figure 33. SP Using Large Intervals

A second pass of SP can then be applied that divides intervals A-D into smaller

intervals, and computes them in parallel. This is shown in Figure 34:

Figure 34. SP Performed on Large Intervals in Parallel

This approach is closer to typical multithreaded application instead of a massively

parallel GPU application, meaning that the Jetson TX1/TX2’s multi-core CPUs would

likely be more applicable than the 256-core GPUs. However, this approach has the

potential to further reduce the runtimes of SP running on the Jetson TX1 and TX2.

www.manaraa.com

103

Appendix

Compute Capability Specifications

Technical Specification 5.3 6.2

Maximum number of resident grids per device 16 16

Maximum dimensionality of grid of thread blocks 3 3

Maximum x-dimension of a grid of thread blocks 231 - 1 231 - 1

Maximum y- or z-dimension of a grid of thread blocks 65535 65535

Maximum dimensionality of thread block 3 3

Maximum x- or y-dimension of a block 1024 1024

Maximum z-dimension of a block 64 64

Maximum number of threads per block 1024 1024

Maximum number of resident blocks per

multiprocessor

32 32

Maximum number of resident warps per

multiprocessor

64 64

Maximum number of resident threads per

multiprocessor

2048 2048

Number of 32-bit registers per multiprocessor 64 K 64 K

Maximum number of 32-bit registers per thread block 32 K 32 K

Maximum number of 32-bit registers per thread 255 255

Maximum amount of shared memory per

multiprocessor

64 KB 64 KB

www.manaraa.com

104

Maximum amount of shared memory per thread block 48 KB 48 KB

Number of shared memory banks 32 32

Amount of local memory per thread 512 KB 512 KB

Constant memory size 64 KB 64 KB

Cache working set per multiprocessor for constant

memory

8 KB 8 KB

Maximum number of instructions per kernel 512 M 512 M

(Table derived from NVIDIA (B), 2017)

www.manaraa.com

105

Bibliography

1. Air Force Space Command. “AFSPC Astrodynamic Standard Software.” 2012.

2. Arora, N., Russell, R. P. “Fast, Efficient and Adaptive Interpolation of the

Geopotential.” Journal of Guidance, Control, and Dynamics, vol.39, no.1, pp. 128-

143, 2016.

3. Asanovic, K., et al. “The Landscape of Parallel Computing Research: A View from

Berkeley.” Electrical Engineering and Computer Science Department, University

of California, Berkeley, 2006.

4. Baird, Col M. A., “Maintaining Space Situational Awareness and Taking it to the

Next Level.” Air & Space Power Journal, Space Focus, pp. 50–72, 2013.

5. Bastow, L. B., “Modeling the Impact of the Payload Alert Communications System

(PACS) on the Accuracy of Conjunction Analysis.” Ph.D. dissertation, Air Force

Institute of Technology, Wright-Patterson AFB, OH, 2013.

6. Botezatu, M. “A Study on Compiler Flags and Performance Events.” Conseil

Européen pour la Recherche Nucléaire (CERN) openlab, 2012.

7. Boyer, M. LAVA Lab CUDA Support: Memory Management Overhead. School of

Engineering and Applied Sciences, University of Virginia.

www.cs.virginia.edu/~mwb7w/cuda_support. 2013. Accessed Nov 2017.

8. Casotto, S., et al. “Evaluation of Methods for Spherical Harmonic Synthesis of the

Gravitational Potential and its Gradients.” Advances in Space Research, vol. 40,

pp. 69-75, 2007.

9. Colliot, T., et al. “Space Risks: A New Generation of Challenges.” Allianz Global

Corporate and Specialty (AGSC), 2012.

10. Crommelin, A. C. D., Cowell, P. H., “Investigation of the Motion of Halley’s

Comet from 1759 to 1910.” Greenwich Observations in Astronomy, Magnetism,

and Meteorology made at the Royal Observatory, vol. 71, series 2, pp. 1-84, 1911.

11. CSRA, “Space Object Self-Tracker Experiment ConOps.” 2014.

12. Flamos, S. M., “Space Object Self-Tracker On-board Orbit Determination

Analysis.” M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB,

OH, 2016.

13. Frank, M. P., “The Physical Limits of Computing.” Computing in Science and

Engineering, vol. 4, issue 3, pp. 16-26, 2002.

www.manaraa.com

106

14. Free Software Foundation, Inc. Using the GNU Compiler Collection (GCC):

Options that Control Optimization.

www.gcc.gnu.org/onlinedocs/gcc/index.html#SEC_Contents. 2018. Accessed Dec

2017.

15. Hack, J. J. “On the Promise of General-Purpose Parallel Computing.” Parallel

Computing, vol. 10, issue 3, pp. 261-275, 1989.

16. Lemoine, F. G., et al. “The Development of the Joint NASA GSFC and the National

Imagery and Mapping Agency (NIMA) Geopotential Model EGM96.” 1998.

17. Lemoine, F.G. EGM96: The NASA GSFC and NIMA Joint Geopotential Model.

www.cddis.nasa.gov/926/egm96/contents.html. 2005. Accessed Jul 2017.

18. McCall, G. H., Darrah, J. H., “Space Situational Awareness: Difficult, Expensive -

and Necessary,” Air & Space Power Journal, Senior Leadership Perspective, pp.

6–16, 2014.

19. Moore, G. “Cramming More Components onto Integrated Circuits.” Electronics

Magazine, pp. 114-117, 19 Apr 1965.

20. NVIDIA Corporation. “Data Sheet: NVIDIA Jetson TX1 System-on-Module.”

Version 1.1, docs.nvidia.com, 2016.

21. NVIDIA Corporation (A). “Data Sheet [Preliminary]: NVIDIA Jetson TX2

System-on-Module.” Version 1.0, docs.nvidia.com, 2017.

22. NVIDIA Corporation (B). “CUDA C Programming Guide.” Version 8.0,

docs.nvidia.com, 2017.

23. NVIDIA Corporation (C). “CUDA C Best Practices Guide.” Version 8.0,

docs.nvidia.com, 2017.

24. Oltrogge, D. L., et al. “Parametric Characterization of SGP4 Theory and TLE

Positional Accuracy.” AMOS SSA Conference, Maui HI, 2014.

25. Otterness, N., et al. “An Evaluation of the NVIDIA TX1 for Supporting Real-time

Computer-Vision Workloads.” General Motors Research, 2017.

26. Pelaez, J., Hedo, J., “A Special Perturbation Method in Orbital Dynamics.”

Celestial Mechanics and Dynamical Astronomy, vol.97, no.2, pp. 131–150, 2007.

www.manaraa.com

107

27. Perry, D. A., “Space Object Self-Tracker Hardware Analysis and Environmental

Testing.” Ph.D. dissertation, Air Force Institute of Technology, Wright-Patterson

AFB, OH, 2014.

28. Pines, S. “Uniform Representation of the Gravitational Potential and its

Derivatives.” The American Institute of Aeronautics and Astronautics, vol. 11, no.

11, pp. 1508-11, 1973.

29. Russell, R. P., Arora, N. “Global Point Mascon Models for Simple, Accurate and

Parallel Geopotential Computation.” Journal of Guidance, Control, and Dynamics,

vol. 35, no. 5, pp. 1568-1581, 2012.

30. Sandbox Science. 1.0 Labeling Earth. www.sandboxscience.com. Accessed Jun

2017.

31. Technologic Systems. “TS-7260 Hardware Manual.” 2010.

32. Vallado, D. A., et al. “Revisiting Spacetrack Report #3.” AIAA Astrodynamics

Specialist Conference, 2006.

33. Vetter, J. R. “Fifty Years of Orbit Determination: Development of Modern

Astrodynamics Methods.” Johns Hopkins APL Technical Digest, vol.27, no.3, pp.

239-52, 2007.

34. Wan Aziz, W.A., et al. “Evaluation of the EGM96 Model of the Geopotential in

Peninsular Malaysia.” Seminar Geoinformation, University Technology Malaysia,

Kuala Lumpur, 1998.

35. Wiesel, W. E., Modern Orbit Determination. Beavercreek OH: Aphelion Press,

2003.

36. Williams, A. C++ Concurrency in Action. Shelter Island NY: Manning

Publications Co., 2012.

www.manaraa.com

108

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

23-03-2018
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

May 2017 – March 2018

TITLE AND SUBTITLE

Special Perturbations on the Jetson TX1 and TX2
Computers

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Moore ,Tyler M., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/ENG)

 2950 Hobson Way, Building 640

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-MS-18-M-047

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

(no sponsor enter: Intentionally left blank)

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT

Simplified General Perturbations Number 4 (SGP4) has been the traditional algorithm for performing Orbit
Determination (OD) onboard orbiting spacecraft. However, the recent rise of high-performance computers
with low Size, Weight, and Power (SWAP) factors has provided the opportunity to use Special
Perturbations (SP), a more accurate algorithm to perform onboard OD. This research evaluates the most
efficient way to implement SP on NVIDIA’s Jetson TX series of integrated Graphical Processing Units
(GPUs). An initial serial version was implemented on the Jetson TX1 and TX2’s Central Processing Units
(CPUs). The runtimes of the initial version are the benchmark that the runtimes of the other versions were
compared against. A second version of SP was implemented using compiler optimizations to increase the
speed of the program. A third version was developed to utilize the Jetsons’ 256-core GPU for parallel
processing to reduce the runtimes of the program. Runtimes of the different versions were then analyzed
to determine the most efficient way to implement SP on the Jetson TX series of computers.

15. SUBJECT TERMS

Orbit Determination, Special Perturbations, Space Object Self-Tracker, NVIDIA, CUDA

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

119

19a. NAME OF RESPONSIBLE PERSON

Col. Dane F. Fuller, AFIT/ENY
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4679 (NOT DSN)

(dane.fuller@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Special Perturbations on the Jetson TX1 and TX2 Computers
	Tyler M. Moore
	Recommended Citation

	tmp.1541099268.pdf.WE7aw

